OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 2 — Jan. 10, 2012
  • pp: 167–175

Simulative method for the optical processor reconfiguration on a dynamically reconfigurable optical platform

Hongjian Wang and Kai Song  »View Author Affiliations


Applied Optics, Vol. 51, Issue 2, pp. 167-175 (2012)
http://dx.doi.org/10.1364/AO.51.000167


View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the reconfiguration technique, users can configure the optical processor of a new optical computing platform, the ternary optical computer (TOC), into 42 specific basic operation units, and reconfigure it when the computation is completed. A simulative method of software for this technique is proposed in this paper. Also, an elaborate experiment based on this software is discussed. This simulation of reconfiguration demonstrates that the theory of reconfiguring optical processor in TOC is valid and also lays the foundation for the hardware implementation of the reconfiguration technique.

© 2012 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(200.3760) Optics in computing : Logic-based optical processing
(200.4740) Optics in computing : Optical processing
(200.4960) Optics in computing : Parallel processing
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Materials

History
Original Manuscript: July 8, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: October 21, 2011
Published: January 9, 2012

Citation
Hongjian Wang and Kai Song, "Simulative method for the optical processor reconfiguration on a dynamically reconfigurable optical platform," Appl. Opt. 51, 167-175 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-2-167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010). [CrossRef]
  2. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005). [CrossRef]
  3. I. Moreno, J. A. Davis, F. A. Klein, and M. J. Mitry, “Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display,” Appl. Opt. 47, 1797–1801 (2008). [CrossRef]
  4. C. Y. Chung, K. C. Cho, C. C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt. 45, 3409–3414 (2006). [CrossRef]
  5. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000). [CrossRef]
  6. M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992). [CrossRef]
  7. E. G. Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef]
  8. A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273 (1987). [CrossRef]
  9. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical flip-flops and sequential logic circuits using a liquid crystal light valve,” Appl. Opt. 23, 2163–2171 (1984). [CrossRef]
  10. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001). [CrossRef]
  11. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  12. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003). [CrossRef]
  13. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005). [CrossRef]
  14. Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010). [CrossRef]
  15. Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011). [CrossRef]
  16. Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005). [CrossRef]
  17. J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008). [CrossRef]
  18. X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011). [CrossRef]
  19. Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009). [CrossRef]
  20. Y. Jin, “Management strategy of data bits in ternary optical computer,” Journal of Shanghai University (Natural Science Edition) 13, 519–523 (2007) (in Chinese).
  21. S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).
  22. X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010). [CrossRef]
  23. L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.
  24. D. Casasent and P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994). [CrossRef]
  25. A. K. Cherri and M. S. Alam, “Algorithms for optoelectronic implementation of modified signed-digit division, square-root, logarithmic, and exponential functions,” Appl. Opt. 40, 1236–1243 (2001). [CrossRef]
  26. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961). [CrossRef]
  27. Z. Y. Shen, “Theory, architecture, and implementation of thousand-trit ternary optical processor,” Ph.D. dissertation (Shanghai University, 2010) (in Chinese).
  28. S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited