OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 2 — Jan. 10, 2012
  • pp: 181–190

Spectral superresolution with ultrashort optical pulses

Naum K. Berger  »View Author Affiliations

Applied Optics, Vol. 51, Issue 2, pp. 181-190 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A superresolution technique for the measurement of transmission, reflection, and absorption spectra is proposed. An ultrashort laser pulse is propagated in a dispersive element and then periodically phase modulated. The temporal modulation is transformed into periodic spectral modulation, for which the number of harmonics, 2M+1, is determined by the modulation index. The modulated pulse is transmitted through (reflected from) the sample to be tested and measured by a spectrometer. By performing 2M+1 measurements for 2M+1 delays between the dispersed pulse and modulation signal, one can restore the spectral response of the sample with superresolution after simple processing. We numerically demonstrate the measurement of the transmission spectrum of an ultranarrow optical filter with a minimum feature of 0.43 pm by an optical spectrum analyzer with a 10 pm resolution. A twentyfold enhancement of the resolution is achieved in the presence of noise with a level of 0.1%. The advantage of the system is its full reconfigurability.

© 2012 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:

Original Manuscript: July 11, 2011
Manuscript Accepted: August 25, 2011
Published: January 9, 2012

Naum K. Berger, "Spectral superresolution with ultrashort optical pulses," Appl. Opt. 51, 181-190 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra? Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001). [CrossRef]
  2. D. K. Buslov, N. A. Nikonenko, N. I. Sushko, and R. G. Zhbankov, “Resolution enhancement in IR spectra of carbohydrates by the deconvolution method and comparison of the results with low-temperature spectra,” Appl. Spectrosc. 54, 1651–1658 (2000). [CrossRef]
  3. V. A. Lórenz-Fonfría, J. Villaverde, and E. Padrós, “Fourier deconvolution in non-self-deconvolving conditions. Effective narrowing, signal-to-noise degradation, and curve fitting,” Appl. Spectrosc. 56, 232–242 (2002). [CrossRef]
  4. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006). [CrossRef]
  5. X. Liu, A. Lin, G. Sun, D. S. Moon, D. Hwang, and Y. Chung, “Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters,” Appl. Opt. 47, 5637–5643 (2008). [CrossRef]
  6. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994). [CrossRef]
  7. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004). [CrossRef]
  8. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope,” J. Opt. Soc. Am. B 25, A101–A110 (2008). [CrossRef]
  9. D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003). [CrossRef]
  10. A. Brablec, D. Trunec, and F. Štastný, “Deconvolution of spectral line profiles: solution of the inversion problem,” J. Phys. D 32, 1870–1875 (1999). [CrossRef]
  11. G. M. Petrov, “A simple algorithm for spectral line deconvolution,” J. Quant. Spectrosc. Radiat. Transfer 72, 281–287 (2002). [CrossRef]
  12. M. Morháč and V. Matoušek, “Complete positive deconvolution of spectrometric data,” Digit. Signal Process. 19, 372–392 (2009). [CrossRef]
  13. A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997). [CrossRef]
  14. P. A. Jansson, “Modern constrained nonlinear methods,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, 1997), pp. 107–181.
  15. J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931–936 (1964). [CrossRef]
  16. W. E. Blass and G. W. Halsey, “Instrumental considerations,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, 1997), pp. 200–235.
  17. V. Torres-Company, J. Lancis, and P. Andrés, “Spectral imaging system for scaling the power spectrum of optical waveforms,” Opt. Lett. 32, 2849–2851 (2007). [CrossRef]
  18. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17, 5691–5697 (2009). [CrossRef]
  19. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004). [CrossRef]
  20. J. M. Helbert, P. Laforie, and P. Miche, “Conditions of pressure scanning of a Fabry–Perot interferometer over a wide spectrum range,” Appl. Opt. 16, 2119–2126 (1977). [CrossRef]
  21. N. K. Berger, “Spectral measurements with superresolution based on periodic modulation of the spectrum,” Appl. Opt. 47, 6535–6542 (2008). [CrossRef]
  22. N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010). [CrossRef]
  23. P. Bousquet, Spectroscopy and Its Instrumentation (Hilger, 1971).
  24. N. K. Berger, B. Levit, and B. Fischer, “Measurement of fiber chromatic dispersion using spectral interferometry with modulation of dispersed laser pulses,” Opt. Commun. 283, 3953–3956 (2010). [CrossRef]
  25. N. K. Berger, B. Levit, B. Fischer, and J. Azaña, “Picosecond flat-top pulse generation by low-bandwidth electro-optic sinusoidal phase modulation,” Opt. Lett. 33, 125–127 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited