OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 2 — Jan. 10, 2012
  • pp: 197–208

Properties of a variable-delay polarization modulator

David T. Chuss, Edward J. Wollack, Ross Henry, Howard Hui, Aaron J. Juarez, Megan Krejny, S. Harvey Moseley, and Giles Novak  »View Author Affiliations

Applied Optics, Vol. 51, Issue 2, pp. 197-208 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 μm and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.4110) Optical devices : Modulators
(350.1270) Other areas of optics : Astronomy and astrophysics
(050.6624) Diffraction and gratings : Subwavelength structures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 5, 2011
Manuscript Accepted: August 1, 2011
Published: January 10, 2012

David T. Chuss, Edward J. Wollack, Ross Henry, Howard Hui, Aaron J. Juarez, Megan Krejny, S. Harvey Moseley, and Giles Novak, "Properties of a variable-delay polarization modulator," Appl. Opt. 51, 197-208 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107–5117 (2006). [CrossRef]
  2. M. Krejny, D. Chuss, C. Drouet d’Aubigny, D. Golish, M. Houde, H. Hui, C. Kulesa, R. F. Loewenstein, S. H. Moseley, G. Novak, G. Voellmer, C. Walker, and E. Wollack, “The Hertz/VPM polarimeter: design and first light observations,” Appl. Opt. 474429–4440 (2008). [CrossRef]
  3. D. Martin, “Polarizing (Martin-Puplett) interferometric spectrometers for the near- and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, 1982), Vol. 6, pp. 65–148.
  4. A. Catalano, L. Conversi, S. de Gregori, M. de Petris, L. Lamagna, R. Maoli, G. Savini, E. S. Battistelli, and A. Orlando, “A far infrared polarimeter,” New Astron. Rev. 10, 79–89 (2004). [CrossRef]
  5. N. Erickson, “A new quasi-optical filter: the reflective polarizing interferometer,” Int. J. Infrared Millim. Waves 8, 1015–1025 (1987). [CrossRef]
  6. N. Erickson, “A 0.9 mm heterodyne receiver for astronomical observations,” in IEEE MTT-S Intl. Microwave Symposium Digest (IEEE, 1978), pp. 438–439.
  7. A. Harvey, “A quasi-optical universal polarizer,” Int. J. Infrared Millim. Waves 14, 1–16 (1993). [CrossRef]
  8. M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622–638 (2001). [CrossRef]
  9. R. L. Akeson, J. E. Carlstrom, J. A. Phillips, and D. P. Woody, “Millimeter interferometric polarization imaging of the young stellar object NGC 1333/IRAS 4A,” Astrophys. J. Lett. 456, L45 (1996). [CrossRef]
  10. H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175–184 (1999).
  11. G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub) millimeter bolometer arrays,” Astron. Astrophys. 422, 751–760 (2004). [CrossRef]
  12. G. Siringo, E. Kreysa, A. Kovacs, K. M. Menten, and J. Forbrich, “Beginning of operation of the polarimeter for the large APEX bolometer camera (LABOCA),” Proc. SPIE 7741, 774108 (2010).
  13. R. Leonardi, B. Williams, M. Bersanelli, I. Ferreira, P. M. Lubin, P. R. Meinhold, H. O’Neill, N. C. Stebor, F. Villa, T. Villela, and C. A. Wuensche, “The cosmic foreground explorer (COFE): a balloon-borne microwave polarimeter to characterize polarized foregrounds,” New Astron. Rev. 50, 977–983 (2006). [CrossRef]
  14. R. Jones, “New calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  15. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  16. S. Sternberg, Group Theory and Physics (Cambridge University, 1994).
  17. D. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2004).
  18. P. F. Goldsmith, Quasioptical Systems (IEEE, 1998).
  19. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Sect. 9.7.
  20. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Elsevier, 1998), Chap. 2, p. 15.
  21. S. Adachi and E. M. Kennaugh, “The analysis of a broad-band circular polarizer including interface reactions,” IEEE Trans. Microwave Theory Tech. 8, 520–525 (1960). [CrossRef]
  22. N. Marcuvitz, Waveguide Handbook, MIT Rad. Labs. Series, Vol. 10 (McGraw-Hill, 1951).
  23. J. R. Wait, “Reflection from a wire grid parallel to a conducting plane,” Can. J. Phys. 32, 571–579 (1954). [CrossRef]
  24. T. Larsen, “A survey of the theory of wire grids,” IEEE Trans. Microwave Theory Tech. 10, 191–201 (1962). [CrossRef]
  25. V. V. Yatsenko and S. A. Tretyakov, “Higher order impedance boundary conditions for sparse wire grids,” IEEE Trans. Antennas Propag. 48, 720–727 (2000). [CrossRef]
  26. W. Chambers, C. Mok, and T. Parker, “Theory of the scattering of electromagnetic waves by regular grid of parallel cylinder wires with circular cross section,” J. Phys. A: Math. Gen. 13, 1433–1441 (1980). [CrossRef]
  27. K. Yasumoto and K. Yoshitomi, “Efficient calculation of free-space periodic Green’s function,” IEEE Trans. Antennas Propag. 47, 1050–1055 (1999). [CrossRef]
  28. T. Manabe, J. Inatani, A. Murk, R. J. Wylde, M. Seta, and D. H. Martin, “A new configuration of polarization-rotating dual-beam interferometer for space use,” IEEE Trans. Microwave Theory Tech. 51, 1696–1704 (2003). [CrossRef]
  29. K. Kushta and K. Yasumoto, “Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell,” Prog. Electromagn. Res. 29, 69–85 (2000). [CrossRef]
  30. T. Edwards, Foundations for Microstrip Circuit Design (Wiley, 1987).
  31. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  32. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  33. M. Goldfarb and R. Pucel, “Modeling via hole grounds in microstrip,” IEEE Microwave Guided Wave Lett. 1, 135–137 (1991). [CrossRef]
  34. L. Landau and E. Lifshitz, Electromagnetics of Continuous Media, Vol. 8 (Pergamon, 1960).
  35. F. Grover, Inductance Calculations (Van Nostrand, 1946).
  36. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235(2000). [CrossRef]
  37. G. Savini, P. A. R. Ade, J. House, G. Pisano, V. Haynes, and P. Bastien,“Recovering the frequency dependent modulation function of the achromatic half-wave plate for POL-2: the SCUBA-2 polarimeter,” Appl. Opt. 48, 2006–2013(2009). [CrossRef]
  38. D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307–318 (1997). [CrossRef]
  39. C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588 (1998). [CrossRef]
  40. J. Lagarias, J. Reeds, and M. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). [CrossRef]
  41. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, “Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67, 979–981 (1977). [CrossRef]
  42. J. A. Beunen, A. E. Costely, G. F. Neill, C. L. Mok, T. J. Parker, and G. Tait, “Performance of free-standing grids wound from 10 μm-diameter tungsten wire at submillimeter wavelengths: computation and measurement,” J. Opt. Soc. Am. 71, 184–188 (1981). [CrossRef]
  43. E. Wollack, W. Grammer, and J. Kingsley, “The Boifot Orthomode Junction,” NRAO, ALMA Memo Series 425 (2002).
  44. E. Wollack and W. Grammer, “Symmetric waveguide orthomode junctions,” in Proceedings of the 14th International Symposium on Space TeraHertz Technology, E. Walker and J. Payne, eds. (NRAO, 2003), pp. 169–176.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited