OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 2 — Jan. 10, 2012
  • pp: 220–237

Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters

Soe Hlaing, Alexander Gilerson, Tristan Harmel, Alberto Tonizzo, Alan Weidemann, Robert Arnone, and Samir Ahmed  »View Author Affiliations


Applied Optics, Vol. 51, Issue 2, pp. 220-237 (2012)
http://dx.doi.org/10.1364/AO.51.000220


View Full Text Article

Enhanced HTML    Acrobat PDF (1632 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO’s time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 1, 2011
Revised Manuscript: October 19, 2011
Manuscript Accepted: October 23, 2011
Published: January 9, 2012

Citation
Soe Hlaing, Alexander Gilerson, Tristan Harmel, Alberto Tonizzo, Alan Weidemann, Robert Arnone, and Samir Ahmed, "Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters," Appl. Opt. 51, 220-237 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-2-220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II. bidirectional aspects,” Appl. Opt. 32, 6864–6872 (1993). [CrossRef]
  2. A. Morel, K. J. Voss, and B. Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. 100, 13143–13150 (1995). [CrossRef]
  3. C. K. Gatebe, M. D. King, A. I. Lyapustin, G. T. Arnold, and J. Redemann, “Airborne spectral measurements of ocean directional reflectance,” J. Atmos. Sci. 62, 1072–1092 (2005). [CrossRef]
  4. K. J. Voss and A. Morel, “Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus predictions,” Limnol. Oceanogr. 50, 698–705 (2005). [CrossRef]
  5. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002). [CrossRef]
  6. Y.-J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44, 1236–1249 (2005). [CrossRef]
  7. A. Gilerson, J. Zhou, R. Fortich, I. Ioannou, S. Hlaing, B. Gross, F. Moshary, and S. Ahmed, “Spectral dependence of the bidirectional reflectance function in coastal waters and its impact on retrieval algorithms,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2007 (IEEE, 2007), pp. 3777–3780.
  8. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. a semianalytical model,” Appl. Opt. 37, 6329–6338 (1998). [CrossRef]
  9. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]
  10. A. Albert and C. Mobley, “An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters,” Opt. Express 11, 2873–2890 (2003). [CrossRef]
  11. A. Albert and P. Gege, “Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties,” Appl. Opt. 45, 2331–2343 (2006). [CrossRef]
  12. Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50, 3155–3167 (2011). [CrossRef]
  13. S. Ahmed, T. Harmel, R. A. Arnone, A. Gilerson, S. Hlaing, and A. D. Weidemann, “Multi- and hyperspectral ocean color measurements from Long Island Sound observation platform (LISCO): comparison with satellite measurements & assessments of uncertainties,” presented at Ocean Optics XX, Anchorage, Alaska, United States, 27–30September 2010.
  14. S. Hlaing, T. Harmel, A. Ibrahim, I. Ioannou, A. Tonizzo, A. Gilerson, and S. Ahmed, “Validation of ocean color satellite sensors using coastal observational platform in Long Island Sound,” Proc. SPIE 7825, 782504 (2010).
  15. T. Harmel, A. Gilerson, S. Hlaing, A. Tonizzo, T. Legbandt, A. Weidemann, R. Arnone, and S. Ahmed, “Long Island Sound Coastal Observatory: assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems,” Appl. Opt. 50, 5842–5860 (2011). [CrossRef]
  16. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455(1999). [CrossRef]
  17. H. R. Gordon, J. W. Brown, R. H. Evans, O. B. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
  18. P. Gege and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters,” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds. (Springer, 2006), pp. 81–109.
  19. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]
  20. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef]
  21. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248 (2005). [CrossRef]
  22. C. D. Mobley and L. K. Sundman, HYDROLIGHT 5 ECOLIGHT 5 Users’ Guide (Sequoia Scientific, Inc., 2008).
  23. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  24. C. Mobley and L. Sundman, HYDROLIGHT 4.2 (Sequoia Scientific, Inc., 2001).
  25. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47, 404–417 (2002). [CrossRef]
  26. A. A. Gilerson, A. A. Gitelson, J. Zhou, D. Gurlin, W. Moses, I. Ioannou, and S. A. Ahmed, “Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands,” Opt. Express 18, 24109–24125 (2010). [CrossRef]
  27. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  28. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
  29. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
  30. K. Voss, “A spectral model of the beam attenuation coefficient in the ocean and coastal areas,” Limnol. Oceanogr. 37, 501–509 (1992). [CrossRef]
  31. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  32. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  33. T. J. Petzold, “Volume scattering functions for selected ocean waters,” DTIC Document (DTIC, 1972).
  34. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002). [CrossRef]
  35. G. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
  36. Z.-P. Lee, ed., “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” Reports of the International Ocean-Colour Coordinating Group, No. 5 (IOCCG, 2006).
  37. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. dependence on water composition,” Opt. Express 15, 15702–15721 (2007). [CrossRef]
  38. A. W. Harrison and C. A. Coombes, “An opaque cloud cover model of sky short wavelength radiance,” Sol. Energy 41, 387–392 (1988).
  39. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  40. G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: northern Adriatic Sea, northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009). [CrossRef]
  41. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004). [CrossRef]
  42. S. B. Hooker, G. Zibordi, J. F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43, 4254–4268 (2004). [CrossRef]
  43. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  44. H. J. Gons, M. Rijkeboer, and K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters,” J. Plankton Res. 24, 947–951 (2002). [CrossRef]
  45. D. McKee, A. Cunningham, D. Wright, and L. Hay, “Potential impacts of nonalgal materials on water-leaving Sun induced chlorophyll fluorescence signals in coastal waters,” Appl. Opt. 46, 7720–7729 (2007). [CrossRef]
  46. G. Zibordi, B. N. Holben, I. Slutsker, D. Giles, D. D’Alimonte, F. Mélin, J. F. Berthon, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary radiometric products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009). [CrossRef]
  47. http://aeronet.gsfc.nasa.gov .
  48. S. Kay, J. D. Hedley, and S. Lavender, “Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths,” Remote Sens. 1, 697–730 (2009).
  49. http://oceancolor.gsfc.nasa.gov .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited