OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4569–4573

Physical mechanism underlying temperature effects on phase retardation

W. Chen, W. Wang, Y. Zhang, S. Zhang, and X. Long  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4569-4573 (2012)
http://dx.doi.org/10.1364/AO.51.004569


View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the physical mechanism underlying the temperature dependence of phase retardation. Changes in refractive index and thickness of the wave plate are the two main contributions to phase retardation variations. Temperature-dependent changes in refractive index are described by Sellmeier’s equation. Constants in this equation need to be determined by fits to experimental data. A new high-precision instrument was used to measure phase retardation at various temperatures. Once determined, the fitting equation can be used to calculate the phase retardation at any temperature, and thus has implications for wave-plate industrial manufacturing.

© 2012 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference

ToC Category:
Physical Optics

History
Original Manuscript: March 13, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 23, 2012
Published: July 2, 2012

Citation
W. Chen, W. Wang, Y. Zhang, S. Zhang, and X. Long, "Physical mechanism underlying temperature effects on phase retardation," Appl. Opt. 51, 4569-4573 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Ghosh, “Coefficients of a dispersion equation for the birefringence of a CdGeAs2 nonlinear crystal at different temperatures,” Appl. Opt. 37, 6456–6458 (1998). [CrossRef]
  2. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Coefficients of a dispersion equation for the birefringence of a CdGeAs2 nonlinear crystal at different temperatures,” Opt. Lett. 18, 1208–1210 (1993). [CrossRef]
  3. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol.% MgO,” Appl. Opt. 31, 6695–6697 (1992). [CrossRef]
  4. H. Shen, D. Zhang, W. Liu, W. Chen, G. Zhang, G. Zhang, and W. Lin, “Measurement of refractive indices and thermal refractive-index coefficients of 7.5 mol. % NbKTiOPO4 crystal,” Appl. Opt. 38, 987–990 (1999). [CrossRef]
  5. D. Y. Zhang, H. Y. Shen, W. Liu, G. F. Zhang, W. Z. Chen, G. Zhang, R. R. Zeng, C. H. Huang, W. X. Lin, and J. K. Liang, “The expressions of the principal thermal refractive index coefficients of 7.5 mol. % NbKTiOPO4 crystals,” Opt. Commun. 168, 111–115 (1999). [CrossRef]
  6. H. Shen, X. Meng, G. Zhang, J. Qin, W. Liu, L. Zhu, C. Huang, L. Huang, and M. Wei, “Sellmeier’s equation and the expression of the thermal refractive-index coefficient for a Nd0.007Gd0.993VO4 crystal,” Appl. Opt. 43, 955–960 (2004). [CrossRef]
  7. G. Ghosh, “Sellmeier coefficients for the birefringence and refractive indices of ZnGeP2 nonlinear crystal at different temperatures,” Appl. Opt. 37, 1205–1212 (1998). [CrossRef]
  8. Y. Lin, Z. Zhou, and R. Wang, “Optical heterodyne measurement of the phase retardation of quarter-wave plate,” Opt. Lett. 13, 533–555 (1988). [CrossRef]
  9. W. Chen, S. Zhang, and X. Long, “Measurement of phase retardation of wave plate online based laser feedback,” Rev. Sci. Instrum. 83, 013101 (2012). [CrossRef]
  10. P. G. R. King, and G. J. Steward, “Metrology with an optical master,” New Sci. 17, 180–182 (1963).
  11. G. Stephan, A. D. May, R. E. Mueller, and B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276–1280 (1987). [CrossRef]
  12. M. Sciamanna, K. Panajotov, H. Thienpont, and I. Veretennicoff, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003). [CrossRef]
  13. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998). [CrossRef]
  14. W. Xiong, P. Glanznig, P. Paddon, and A. D. May, “Stability of polarized modes in a quasi-isotropic laser: experimental confirmation,” J. Opt. Soc. Am. B 4, 1276–1280 (1987). [CrossRef]
  15. J. Brannon, “Laser feedback: its effect on laser frequency,” Appl. Opt. 15, 1119–1120 (1976). [CrossRef]
  16. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987). [CrossRef]
  17. S. Shinohara, “Compact and versatile self-mixing type semiconductor laser Doppler velocimeters with direction discrimination circuit,” IEEE Trans. Instrum. Meas. 38, 574–577 (1989). [CrossRef]
  18. S. Donati, and G. Giuliani, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995). [CrossRef]
  19. S. Donati, L. Fazoni, and S. Merlo, “A PC-interfaced compact laser-diode feedback interferometer for displacement measurements,” IEEE Trans. Instrum. Meas. 45, 942–947 (1996). [CrossRef]
  20. S. Merlo and S. Donati, “Reconstruction of displacement waveforms with a single-channel laser-diode feedback interferometer,” IEEE J. Quantum Electron. 33, 527–531 (1997). [CrossRef]
  21. T. Suzuki, T. Muto, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked laser diode interferometer,” Appl. Opt. 38, 7069–548 (1999). [CrossRef]
  22. S. Koboyashi, Y. Yamamoto, and M. Ito, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 582–595 (1982). [CrossRef]
  23. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998). [CrossRef]
  24. G. Beheim, and K. Firtsch, “Ranging finding using frequency modulated laser diode,” Appl. Opt. 25, 1439–1442 (1986). [CrossRef]
  25. P. A. Roos, M. Stephens, and C. Wiemen, “Laser vibrometer based on optical feedback induced frequency modulation of a single mode laser diode,” Appl. Opt. 35, 6754–6761 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited