OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4589–4596

Terahertz modulator based on insulator–metal transition in photonic crystal waveguide

Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4589-4596 (2012)
http://dx.doi.org/10.1364/AO.51.004589


View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A terahertz modulator based on the insulator–metal transition (IMT) in a photonic crystal waveguide (PCW) coated by vanadium dioxide (VO2) film is proposed. The numerical simulations show that a dielectric state and a metallic state with quite different photonic band structures and transmission properties in the proposed PCW are reciprocally converted because of the IMT of VO2, and the pass-bands of this PCW are greatly shifted from 0.68 to 0.8 and 1.02 to 1.25 THz to 0.8–1.45 THz. This PCW significantly enhances the modulation depth and sensitivity compared with bare VO2 film. Extensive investigation demonstrates that the thickness of VO2 film greatly affects the IMT process in the PCW, and limits the ultimate modulation depth of the device. The proposed modulation scheme will be of great significance for potential THz applications.

© 2012 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(260.3090) Physical optics : Infrared, far
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 19, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 24, 2012
Published: July 2, 2012

Citation
Fei Fan, Yu Hou, Zi-Wei Jiang, Xiang-Hui Wang, and Sheng-Jiang Chang, "Terahertz modulator based on insulator–metal transition in photonic crystal waveguide," Appl. Opt. 51, 4589-4596 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004). [CrossRef]
  2. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007). [CrossRef]
  3. M. Hochberg, T. Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon–polymer hybrid system,” Nat. Mater. 5, 703–709 (2006). [CrossRef]
  4. H. T. Chen, J. F O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photon. 2, 295–298 (2008). [CrossRef]
  5. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photon. 3, 148–151 (2009). [CrossRef]
  6. Y. G. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31, 1534–1536 (2006). [CrossRef]
  7. F. Fan, Z. Guo, J. J. Bai, X. H. Wang, and S. J. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28, 697–702 (2011). [CrossRef]
  8. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009). [CrossRef]
  9. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959). [CrossRef]
  10. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, Cavalleri, D. Brassard, M. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99, 226401 (2007). [CrossRef]
  11. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” New J. Phys 6, 52 (2004). [CrossRef]
  12. B. J. Kim, Y. W. Lee, S. Choi, J. W. Lim, S. J. Yun, and H. T. Kim, “Micrometer X-ray diffraction study of VO2 films: separation between metal-insulator transition and structural phase transition,” Phys. Rev. B 77, 235401 (2008). [CrossRef]
  13. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192 (2010). [CrossRef]
  14. D. Xiao, K. W. Kim, and J. M. Zavada, “Electrically programmable photonic crystal slab based on the metal-insulator transition in VO2,” J. Appl. Phys. 97, 106102 (2005). [CrossRef]
  15. D. A. Mazurenko, R. Kerst, and J. I. Dijkhuis, “Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal,” Appl. Phys. Lett. 86, 041114 (2005). [CrossRef]
  16. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, “Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy,” Phys. Rev. B 74, 205103 (2006). [CrossRef]
  17. P. Mandal, A. Speck, C. Ko, and S. Ramanathan, “Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition,” Opt. Lett. 36, 1927–1929 (2011). [CrossRef]
  18. C. H. Chen, Y. H. Zhu, Y. Zhao, J. H. Lee, H. Y. Wang, A. Bernussi, M. Holtz, and Z. Y. Fan, “VO2 multidomain heteroepitaxial growth and terahertz transmission modulation,” Appl. Phys. Lett. 97, 211905 (2010). [CrossRef]
  19. T. L. Cocker, L. V. Titova, S. Fourmaux, H. C. Bandulet, D. Brassard, J. C. Kieffer, M. A. El Khakani, and F. A. Hegmann, “Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film,” Appl. Phys. Lett. 97, 221905 (2010). [CrossRef]
  20. J. Rozen, R. Lopez, R. F. Haglund, and L. C. Feldman, “Two-dimensional current percolation in nanocrystalline vanadium dioxide films,” Appl. Phys. Lett. 88, 081902 (2006). [CrossRef]
  21. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tenability,” Appl. Phys. Lett. 97, 021111(2010). [CrossRef]
  22. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. J. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064–2068 (2010). [CrossRef]
  23. Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, and D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19, 21211–21216 (2011). [CrossRef]
  24. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, and T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92, 011907 (2008). [CrossRef]
  25. J. Kyoung, M. Seo, H. Park, S. Koo, H. S. Kim, Y. Park, B. J. Kim, K. Ahn, N. Park, H. T. Kim, and D. S. Kim, “Giant nonlinear response of terahertz nanoresonators on VO2 thin film.” Opt. Express 18, 16452–16459 (2010). [CrossRef]
  26. A. Pashkin, C. Kubler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy,” Phys. Rev. B 83, 195120 (2011). [CrossRef]
  27. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98, 071105 (2011). [CrossRef]
  28. X. B. Wei, Z. M. Wu, X. D. Xu, T. Wang, J. J. Tang, W. Z. Li, and Y. D. Jiang, “Growth mode and texture study in vanadium dioxide thin films deposited by magnetron sputtering,” J. Phys. D: Appl. Phys. 41, 055303 (2008). [CrossRef]
  29. E. I. Smirnova, C. Chen, and M. A. Shapiro, “Simulation of photonic band gaps in metal rod lattices for microwave applications,” J. Appl. Phys. 91, 960–968 (2002). [CrossRef]
  30. F. Fan, S. J. Chang, and Y. Hou, “Metallic photonic crystals for terahertz tunable filters,” Sci. China Inf. Sci. 55, 72–78(2012).
  31. K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, “Photonic bands of metallic systems. I. Principle of calculation and accuracy,” Phys. Rev. B 64, 045116 (2001). [CrossRef]
  32. H. Liu, J. Q. Yao, D. G. Xu, and P. Wang, “Propagation characteristics of two-dimensional photonic crystals in the terahertz range,” Appl. Phys. B: Lasers Opt. 87, 57–63 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited