OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4612–4621

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4612-4621 (2012)
http://dx.doi.org/10.1364/AO.51.004612


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the quantitative elemental analysis of a steel sample using calibration-free laser-induced breakdown spectroscopy (CF-LIBS). A Q-switched Nd:YAG laser (532 nm wavelength) is used to produce a plasma by focusing it onto a steel sample in air at atmospheric pressure. The time-resolved spectra from atomic and ionic emission lines of the steel elements are recorded by an echelle grating spectrograph coupled with a gated intensified CCD camera and are used for the plasma characterization and quantitative analysis of the sample. The time delay at which the plasma is in local thermodynamic equilibrium as well as optically thin, necessary for elemental analysis, is deduced. An algorithm for the CF-LIBS relating the experimentally measured spectral intensity values with the basic physics of the plasma is developed and used for the determination of Fe, Cr, Ni, Mg, and Si concentrations in the steel sample. The analytical results obtained from the CF-LIBS technique agree well with the certified values of the elements in the sample, with relative uncertainties of less than 5%.

© 2012 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 6, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: May 15, 2012
Published: July 2, 2012

Citation
M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, "Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy," Appl. Opt. 51, 4612-4621 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. A. W. Miziolek, V. Pallesschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).
  3. V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007). [CrossRef]
  4. V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007). [CrossRef]
  5. A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007). [CrossRef]
  6. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002). [CrossRef]
  7. B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005). [CrossRef]
  8. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999). [CrossRef]
  9. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.
  10. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995). [CrossRef]
  11. C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999). [CrossRef]
  12. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001). [CrossRef]
  13. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004). [CrossRef]
  14. B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005). [CrossRef]
  15. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006). [CrossRef]
  16. G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011). [CrossRef]
  17. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999). [CrossRef]
  18. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007). [CrossRef]
  19. K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009). [CrossRef]
  20. K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009). [CrossRef]
  21. D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002). [CrossRef]
  22. V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004). [CrossRef]
  23. F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004). [CrossRef]
  24. I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005). [CrossRef]
  25. V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007). [CrossRef]
  26. J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009). [CrossRef]
  27. M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005). [CrossRef]
  28. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004). [CrossRef]
  29. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006). [CrossRef]
  30. A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007). [CrossRef]
  31. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003). [CrossRef]
  32. S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009). [CrossRef]
  33. S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010). [CrossRef]
  34. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010). [CrossRef]
  35. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issue within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010). [CrossRef]
  36. J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001). [CrossRef]
  37. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995). [CrossRef]
  38. J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998). [CrossRef]
  39. S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000). [CrossRef]
  40. M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004). [CrossRef]
  41. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005). [CrossRef]
  42. J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005). [CrossRef]
  43. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214–218 (2006). [CrossRef]
  44. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  45. R. W. P. McWhirter, “Spectral Intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965), pp. 201–264.
  46. G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010). [CrossRef]
  47. R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009). [CrossRef]
  48. Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008). [CrossRef]
  49. National Institute of Standards and Technology, “NIST Atomic Spectra Database,” http://physics.nist.gov .
  50. T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited