OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4627–4637

Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties

Andrew J. Gomes, Vladimir Turzhitsky, Sarah Ruderman, and Vadim Backman  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4627-4637 (2012)
http://dx.doi.org/10.1364/AO.51.004627


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-gating has been widely used to probe superficial tissue structures, but the penetration depth properties of this method have not been completely elucidated. This study employs a polarization-sensitive Monte Carlo method to characterize the penetration depth statistics of polarization-gating. The analysis demonstrates that the penetration depth depends on both the illumination-collection geometry [illumination-collection area (R) and collection angle (θc)] and on the optical properties of the sample, which include the scattering coefficient (μs), absorption coefficient (μa), anisotropy factor (g), and the type of the phase function. We develop a mathematical expression relating the average penetration depth to the illumination-collection beam properties and optical properties of the medium. Finally, we quantify the sensitivity of the average penetration depth to changes in optical properties for different geometries of illumination and collection. The penetration depth model derived in this study can be applied to optimizing application-specific fiber-optic probes to target a sampling depth of interest with minimal sensitivity to the optical properties of the sample.

© 2012 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(170.2945) Medical optics and biotechnology : Illumination design
(290.5855) Scattering : Scattering, polarization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 16, 2011
Revised Manuscript: December 17, 2011
Manuscript Accepted: April 5, 2012
Published: July 2, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Andrew J. Gomes, Vladimir Turzhitsky, Sarah Ruderman, and Vadim Backman, "Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties," Appl. Opt. 51, 4627-4637 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pawley and B. R. Masters, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087–1089 (2004). [CrossRef]
  3. A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054 (2004). [CrossRef]
  4. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002). [CrossRef]
  5. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003). [CrossRef]
  6. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003). [CrossRef]
  7. L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002). [CrossRef]
  8. A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005). [CrossRef]
  9. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004). [CrossRef]
  10. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317–7328 (2007). [CrossRef]
  11. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005). [CrossRef]
  12. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004). [CrossRef]
  13. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143(1997). [CrossRef]
  14. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17, 2780–2796 (2009). [CrossRef]
  15. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005). [CrossRef]
  16. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005). [CrossRef]
  17. L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008). [CrossRef]
  18. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991). [CrossRef]
  19. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999). [CrossRef]
  20. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997). [CrossRef]
  21. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef]
  22. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000). [CrossRef]
  23. Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003). [CrossRef]
  24. M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006). [CrossRef]
  25. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008). [CrossRef]
  26. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002). [CrossRef]
  27. A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009). [CrossRef]
  28. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008). [CrossRef]
  29. M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996). [CrossRef]
  30. X. Guo, M. F. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007). [CrossRef]
  31. X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008). [CrossRef]
  32. Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005). [CrossRef]
  33. Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005). [CrossRef]
  34. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005). [CrossRef]
  35. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005). [CrossRef]
  36. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003). [CrossRef]
  37. M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001). [CrossRef]
  38. A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011). [CrossRef]
  39. J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009). [CrossRef]
  40. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993). [CrossRef]
  41. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef]
  42. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010). [CrossRef]
  43. I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009). [CrossRef]
  44. H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).
  45. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. Sloot, F. F. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef]
  46. R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005). [CrossRef]
  47. A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011). [CrossRef]
  48. N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited