OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4660–4666

Intracavity absorption spectroscopy with a tunable multimode traveling-wave ring Ti:sapphire laser

Tomoyuki Ueda, Naoya Kato, Akira Takemura, Hiroyuki Koishi, and Atsuo Morinaga  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4660-4666 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A tunable multimode unidirectional traveling-wave Ti:sapphire laser was developed to measure in situ the atmospheric absorption spectra using intracavity absorption spectroscopy. The effective absorption path length was 2100 km. O2 and H2O vapor lines in atmosphere with absorption coefficients of 106108cm1 were measured with uncertainties <5%, and the absorption coefficients were in agreement with those estimated from the HITRAN database. By tuning the wavelength, a weak absorption line with an absorption coefficient of 109cm1 was measured with a sensitivity of 2×1010cm1. The sensitivity was limited by the residual parasitic variation that appeared in the spectrum.

© 2012 Optical Society of America

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(140.3590) Lasers and laser optics : Lasers, titanium
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 23, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: May 15, 2012
Published: July 3, 2012

Tomoyuki Ueda, Naoya Kato, Akira Takemura, Hiroyuki Koishi, and Atsuo Morinaga, "Intracavity absorption spectroscopy with a tunable multimode traveling-wave ring Ti:sapphire laser," Appl. Opt. 51, 4660-4666 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Demtröder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, 2002).
  2. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999). [CrossRef]
  3. J. Sierks, T. Latz, V. M. Baev, and P. E. Toschek, “Spectral dynamics of multi-mode dye lasers and single-atom absorption,” in Proceeding of the 1996 European Quantum Electronics Conference (EQEC) (1996), p. 100.
  4. J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993). [CrossRef]
  5. A. Takemura, T. Okazaki, M. Taniguchi, Y.−H. Zhou, and A. Morinaga, “Intracavity absorption spectroscopy of atmospheric water vapor using a multimode traveling-wave ring dye laser,” Jpn. J. Appl. Phys. 47, 4578–4582 (2008). [CrossRef]
  6. N. Kato, T. Ueda, T. Okazaki, Y. Sakuragi, and A. Morinaga, “Intracavity absorption spectroscopy using a multimode unidirectional traveling−wave ring dye laser with a high sensitivity of 5×10−11  cm−1,” Jpn. J. Appl. Phys. 50, 040205 (2011). [CrossRef]
  7. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing limit of the sensitivity,” Appl. Phys. B 85, 355–364 (2006). [CrossRef]
  8. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 474 (2008). [CrossRef]
  9. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  10. D. A. Gilmore, P. Vujkovic Cvijin, and G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990). [CrossRef]
  11. A. Charvát, A. A. Kachanov, A. Campargue, D. Permogorov, and F. Stoeckel, “High sensitive intracavity absorption spectroscopy of CHD3 in the near infrared with a titanium:sapphire laser,” Chem. Phys. Lett. 214, 495–501 (1993). [CrossRef]
  12. A. Campargue, A. Charvat, and D. Permogorov, “Absolute intensity measurement of CO2 overtone transitions in the near-infrared,” Chem. Phys. Lett. 223, 567–572 (1994). [CrossRef]
  13. B. Abel, A. Charvát, and S. F. Deppe, “Lifetimes of the lowest triplet state of ozone by intracavity laser absorption spectroscopy,” Chem. Phys. Lett. 277, 347–355 (1997). [CrossRef]
  14. B. Kalmar and J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998). [CrossRef]
  15. J. Sierks, J. Eschner, V. M. Baev, and P. E. Toscheck, “Sensitivity of intracavity absorption measurements with Ti:sapphire laser,” Opt. Commun. 102, 265–270 (1993). [CrossRef]
  16. A. Kachavov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers: II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979(1995). [CrossRef]
  17. C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency UV radiation,” J. Phys. D. Appl. Phys. 12, 355–368(1979). [CrossRef]
  18. F. Biraben, “Efficacite des systemes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356(1979). [CrossRef]
  19. B. Löhden, S. Kuznetsova, K. Sengstock, V. M. Baev, A. Goldman, S. Cheskis, and B. Pálsdóttir, “Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments,” Appl. Phys. B 102, 331–344 (2011). [CrossRef]
  20. E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited