OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4691–4702

Design and scaling of monocentric multiscale imagers

Eric J. Tremblay, Daniel L. Marks, David J. Brady, and Joseph E. Ford  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4691-4702 (2012)
http://dx.doi.org/10.1364/AO.51.004691


View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monocentric multi-scale (MMS) lenses are a new approach to high-resolution wide-angle imaging, where a monocentric objective lens is shared by an array of identical rotationally symmetric secondary imagers that each acquire one overlapping segment of a mosaic. This allows gigapixel images to be computationally integrated from conventional image sensors and relatively simple optics. Here we describe the MMS design space, introducing constraints on image continuity and uniformity, and show how paraxial system analysis can provide both volume scaling and a systematic design methodology for MMS imagers. We provide the detailed design of a 120° field of viewimager (currently under construction) resolving 2 gigapixels at 41.5 μrad instantaneous field of view, and demonstrate reasonable agreement with the first-order scaling calculation.

© 2012 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(080.3620) Geometric optics : Lens system design
(220.2740) Optical design and fabrication : Geometric optical design
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: November 29, 2011
Revised Manuscript: May 6, 2012
Manuscript Accepted: May 8, 2012
Published: July 4, 2012

Citation
Eric J. Tremblay, Daniel L. Marks, David J. Brady, and Joseph E. Ford, "Design and scaling of monocentric multiscale imagers," Appl. Opt. 51, 4691-4702 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Sargent, C. Bartley, P. Dille, J. Keller, I. Nourbakhsh, and R. LeGrand, “Timelapse GigaPan: Capturing, sharing, and exploring timelapse gigapixel imagery,” presented at the Fine International Conference on Gigapixel Imaging for Science, Pittsburgh, PA (2010).
  2. V. Suntharalingam, R. Berger, S. Clark, J. Knecht, A. Messier, K. Newcomb, D. Rathman, R. Slattery, A. Soares, C. Stevenson, K. Warner, D. Young, L. P. Ang, B. Mansoorian, and D. Shaver,” A 4-side tileable back-illuminated 3D-integrated Mpixel CMOS image sensor, “in Proceedings of IEEE International Solid State Circuits Conference Technical Digest (IEEE, 2009).
  3. K. W. Hodapp, N. Kaiser, H. Aussel, W. Burgett, K. C. Chambers, M. Chun, T. Dombeck, A. Douglas, D. Hafner, J. Heasley, J. Hoblitt, C. Hude, S. Isani, R. Jedicke, D. Jewitt, U. Laux, G. A. Luppino, R. Lupton, M. Maberry, E. Magnier, E. Mannery, D. Monet, J. Morgan, P. Onaka, P. Price, A. Ryan, W. Siegmund, I. Szapudi, J. Tonry, R. Wainscoat, and M. Waterson, “Design of the Pan-STARRS telescopes,” Astron. Nachr. 325, 636–642 (2004). [CrossRef]
  4. B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008). [CrossRef]
  5. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef]
  6. B. Wilburn, N. Joshi, V. Vaish, E. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 763–776 (2005). [CrossRef]
  7. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef]
  8. D. L. Marks and D. J. Brady, “Close-up imaging using microcamera arrays for focal plane synthesis,” Opt. Eng. 50, 033205 (2011). [CrossRef]
  9. J. E. Ford and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems (Optical Society of America, 2010), paper IMC2.
  10. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011). [CrossRef]
  11. Michael Kidger, Fundamental Optical Design (SPIE, 2002), Chap. 7.
  12. T. Sutton, “On the panoramic lens,” a paper read toBritish Association Report in 1861, as described in Patents for Inventions, Abridgements of the Specifications Relating to Photography (Great Britain Patent Office, 1861).
  13. D. L. Marks and D. J. Brady, “Gigagon: A monocentric lens design imaging 40 gigapixels,” in Imaging Systems (Optical Society of America, 2010), paper ITuC2.
  14. G. Krishnan and S. K. Nayar, “Towards a true spherical camera,” Proc. SPIE 7240, 724002 (2009).
  15. O. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” in IEEE International Conference on Computational Photography (IEEE, 2011).
  16. H. Son, D. L. Marks, E. J. Tremblay, J. Ford, J. Hahn, R. Stack, A. Johnson, P. McLaughlin, J. Shaw, J. Kim, and D. J. Brady, “A multiscale, wide field, gigapixel camera,” in Imaging Systems Applications (Optical Society of America, 2011), paper JTuE2.
  17. George Smith and David A. Atchison, The Eye and Visual Optical Instruments (Cambridge University, 1997), Chap. 17.
  18. W. C. Sweatt, D. D. Gill, D. P. Adams, M. J. Vasile, and A. A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23, 13–17 (2008). [CrossRef]
  19. B. W. Clare and D. L. Kepert, “The closest packing of equal circles on a sphere,” Proc. R. Soc. A 405, 329–344 (1986). [CrossRef]
  20. H. Kenner, Geodesic Math and How to Use It, 2nd ed.(University of California, 2003).
  21. H. S. Son, D. L. Marks, J. Hahn, J. Kim, and D. J. Brady, “Design of a spherical focal surface using close packed relay optics,” Opt. Express 19, 16132–16138 (2011). [CrossRef]
  22. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28, 2540–2553 (2011). [CrossRef]
  23. http://mathworld.wolfram.com/SphericalCap.html .
  24. D. Golish, E. Vera, K. Kelly, Q. Gong, D. J. Brady, and M. E. Gehm, “Image formation in multiscaleoptical systems,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE4.
  25. ZEMAX, Radiant ZEMAX LLC, 112th Avenue NE, Bellevue, Wash. 98004.
  26. L. P. Zeon Chemicals, Louisville, Ky. 40211, http://www.zeonchemicals.com/ .
  27. Aptina Imaging, San Jose, Calif. 95134, http://www.aptina.com/
  28. Michael Pfeffer, “Optomechanics of plastic optical components,” in Handbook of Plastic Optics, S. Bäumer, ed. (Wiley-VCH, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited