OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4722–4729

Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection

Woo Kyung Jung, Nak-Hyeon Kim, and Kyung Min Byun  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4722-4729 (2012)
http://dx.doi.org/10.1364/AO.51.004722


View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although subwavelength dielectric gratings can be employed to achieve a high sensitivity of the surface plasmon resonance (SPR) biosensor, the plasmonic interpretation verifying the resulting sensitivity improvement remains unclear. The aim of this study is to elucidate the effects of the grating’s geometric parameters on the amplification of SPR responses and to understand the physical mechanisms associated with the enhancement. Our numerical results show that the proposed SPR substrate with a dielectric grating can provide a better sensitivity due to the combined effects of surface reaction area and field distribution at the binding region. An influence of adhesion layer on the sensor performance is also discussed. The obtained results will be promising in high-sensitivity plasmonic biosensing applications.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 22, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 21, 2012
Published: July 9, 2012

Citation
Woo Kyung Jung, Nak-Hyeon Kim, and Kyung Min Byun, "Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection," Appl. Opt. 51, 4722-4729 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008). [CrossRef]
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007). [CrossRef]
  3. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009). [CrossRef]
  4. S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010). [CrossRef]
  5. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011). [CrossRef]
  6. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010). [CrossRef]
  7. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004). [CrossRef]
  8. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007). [CrossRef]
  9. S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006). [CrossRef]
  10. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004). [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  13. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993). [CrossRef]
  14. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007). [CrossRef]
  15. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010). [CrossRef]
  16. W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011). [CrossRef]
  17. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A: Pure Appl. Opt. 11, 114001 (2009). [CrossRef]
  18. S. H. Choi, S. J. Kim, and K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48, 2924–2931 (2009). [CrossRef]
  19. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc. 59, 661–667 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited