OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4742–4748

Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators

Pierre-Henri Merrer, Khaldoun Saleh, Olivier Llopis, Simone Berneschi, Franco Cosi, and Gualtiero Nunzi Conti  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4742-4748 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical Q factor measurements are performed on a whispering gallery mode (WGM) disk resonator using a microwave frequency domain approach instead of using an optical domain approach. An absence of hysteretic behavior and a better linearity are obtained when performing linewidth measurements by using a microwave modulation for scanning the resonances instead of the piezoelectric-based frequency tuning capability of the laser. The WGM resonator is then used to stabilize a microwave optoelectronic oscillator. The microwave output of this system generates a 12.48 GHz signal with 94dBc/Hz phase noise at 10 kHz offset.

© 2012 Optical Society of America

OCIS Codes
(230.4910) Optical devices : Oscillators
(230.5750) Optical devices : Resonators
(350.4010) Other areas of optics : Microwaves

ToC Category:
Optical Devices

Original Manuscript: April 11, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 1, 2012
Published: July 9, 2012

Pierre-Henri Merrer, Khaldoun Saleh, Olivier Llopis, Simone Berneschi, Franco Cosi, and Gualtiero Nunzi Conti, "Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators," Appl. Opt. 51, 4742-4748 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Cibiel, M. Regis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersale, and V. Giordano, “Optimization of an ultra low-phase noise sapphire-SiGe HBT oscillator using nonlinear CAD,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 33–41 (2004). [CrossRef]
  2. C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, 1998).
  3. X. S. Yao and L. Maleki, “High frequency optical subcarrier generator,” Electron. Lett. 30, 1525–1526 (1994). [CrossRef]
  4. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56, 449–456 (2008). [CrossRef]
  5. D. Eliyahu and L. Maleki, “Modulation response (S21) of the coupled opto-electronic oscillator,” in Proceedings of IEEE Conference on Frequency Control Symposium (IEEE, 2005), pp. 850–856.
  6. A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in Proceedings of IEEE Conference Frequency Control Symposium (IEEE, 2010), pp. 554–557.
  7. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007). [CrossRef]
  8. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  9. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999). [CrossRef]
  10. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000). [CrossRef]
  11. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef]
  12. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008). [CrossRef]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  14. T. Carmon, T. J. Kippenberg, Y. Lan, R. Hosein, S. Sean, and K. J. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558–3566 (2005). [CrossRef]
  15. D. O’Shea, A. Rettenmaier, and A. Rauschenbeutel, “Active frequency stabilization of an ultra-high Q whispering-gallery-mode microresonator,” Appl. Phys. B 99, 623–627 (2010). [CrossRef]
  16. P.-H. Merrer, O. Llopis, and G. Cibiel, “Laser stabilization on a fiber ring resonator and application to RF filtering,” IEEE Photon. Technol. Lett. 20, 1399–1401 (2008). [CrossRef]
  17. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008). [CrossRef]
  18. P.-H. Merrer, A. Bouchier, H. Brahimi, O. Llopis, and G. Cibiel, “High-Q optical resonators for laser stabilization in microwave photonics oscillators,” in Proceedings of IEEE Conference on CLEO Europe (IEEE, 2009), p. 1.
  19. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quant. Electron. 12, 3–14 (2006). [CrossRef]
  20. D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE 54, 329–330 (1966). [CrossRef]
  21. K. Volyanskiy, P. Salzenstein, H. Tavernier, M. Pogurmirskiy, Y. K. Chembo, and L. Larger, “Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation,” Opt. Express 18, 22358–22363 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited