OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4749–4753

Metamaterial-based polarization control plate for producing incoherent laser irradiation

Xiaohui Ling, Hailu Luo, Chujun Zhao, Shuangchun Wen, and Dianyuan Fan  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4749-4753 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a metamaterial-based random polarization control plate to produce incoherent laser irradiation by exploiting the ability of metamaterial in the local polarization manipulation of a beam upon transmission via tuning its local geometry. As a proof of principle, we exemplify this idea numerically in a simple optical system using a typical L-shaped plasmonic metamaterial with locally varying geometry, from which the desired polarization distribution can be obtained. The calculating results illustrate that this scheme can effectively suppress the speckle contrast and increase irradiation uniformity, which has potential to satisfy the increasing requirements for incoherent laser irradiation.

© 2012 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.5440) Optical devices : Polarization-selective devices
(160.3918) Materials : Metamaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 29, 2011
Revised Manuscript: May 2, 2012
Manuscript Accepted: May 19, 2012
Published: July 9, 2012

Xiaohui Ling, Hailu Luo, Chujun Zhao, Shuangchun Wen, and Dianyuan Fan, "Metamaterial-based polarization control plate for producing incoherent laser irradiation," Appl. Opt. 51, 4749-4753 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Subsection 5.4.3.
  2. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986). [CrossRef]
  3. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” in Vol. 45 of Laboratory for Laser Energetics Review Quarterly Report, NTIS document no. DOE/DP40200-149 (University of Rochester, 1990), p. 1–12.
  4. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992). [CrossRef]
  5. J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000). [CrossRef]
  6. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004). [CrossRef]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  8. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007). [CrossRef]
  9. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006). [CrossRef]
  10. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007). [CrossRef]
  11. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008). [CrossRef]
  12. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  13. C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011). [CrossRef]
  14. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984). [CrossRef]
  15. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on Nova laser,” Appl. Opt. 32, 2543–2554 (1993). [CrossRef]
  16. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer, 1984).
  17. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts, 2006).
  18. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010). [CrossRef]
  19. R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).
  20. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010). [CrossRef]
  21. A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  24. J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited