OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4810–4817

Design of a multichannel, multiresolution smart imaging system

Gebirie Y. Belay, Youri Meuret, Heidi Ottevaere, Peter Veelaert, and Hugo Thienpont  »View Author Affiliations

Applied Optics, Vol. 51, Issue 20, pp. 4810-4817 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the design of a multichannel imaging system where the different optical channels have a different angular resolution and field-of-view. Such an imaging system is able to resolve fine details in a small region of interest through the channel that has the highest angular resolution (0.0096°) while controlling the surrounding region through the channel that has the widest field-of-view (2×40°). An interesting feature of such a multichannel, multiresolution imaging system is that various image processing algorithms can be applied at different segments of the image sensor. We have designed a three channel imaging system where each optical channel consists of four aspheric lens surfaces. These three imaging channels share a single image sensor with a resolution of 1440×960 and a 10 μm pixel size. All imaging channels have diffraction-limited performance ensuring good overall image quality.

© 2012 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.4190) Imaging systems : Multiple imaging
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Imaging Systems

Original Manuscript: February 24, 2012
Revised Manuscript: May 28, 2012
Manuscript Accepted: May 28, 2012
Published: July 9, 2012

Gebirie Y. Belay, Youri Meuret, Heidi Ottevaere, Peter Veelaert, and Hugo Thienpont, "Design of a multichannel, multiresolution smart imaging system," Appl. Opt. 51, 4810-4817 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kingslake, Optical System Design (Academic, 1983).
  2. M. Kedzierski and A. Fryskowska, “Precise method of fisheye lens calibration,” in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII, 765–768 (2008).
  3. C. Hughes, P. Denny, E. Jones, and M. Glavin, “Accuracy of fish-eye lens models,” Appl. Opt. 49, 3338–3347 (2010). [CrossRef]
  4. E. Y. Lam, “Compact and thin multi-lens system for machine vision applications,” Proc. SPIE 6813, 681305 (2008). [CrossRef]
  5. H. R. Fallah and A. Karimzadeh, “Design and simulation of a high-resolution superposition compound eye,” J. Mod. Opt. 54, 67–76 (2007). [CrossRef]
  6. J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinspiration Biomimetics 1, R1–R16 (2006). [CrossRef]
  7. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010). [CrossRef]
  8. J. Duparré, F. Wippermann, P. Dannberg, and A. Bräuer, “Artificial compound eye zoom camera,” Bioinspir. Biomim. 3, 046008 (2008). [CrossRef]
  9. A. Bräuer, A. Brückner, F. Wippermann, P. Dannberg, and R. Leitel, “High resolution multichannel imaging systems,” presented at the 17th Microoptics Conference (MOC’11)Sendai, Japan, 30 Oct.–2 Nov. 2011.
  10. E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very wide field of view,” Proc. SPIE 7716, 77162D (2010). [CrossRef]
  11. J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006). [CrossRef]
  12. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006). [CrossRef]
  13. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18, 18125–18137 (2010). [CrossRef]
  14. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared micro-camera inspired by Xenospeckii vision,” Appl. Opt. 48, 3368–3374 (2009). [CrossRef]
  15. P. Camacho, F. Coslado, M. Gonzalez, and F. Sandoval, “Adaptive multiresolution imager based on FPGAs,” in X European Signal Processing Conference (2000), pp. 1449–1452.
  16. S. E. Kemeny, R. Panicacci, B. Pain, L. Matthies, and E. R. Fossum, “Multi-resolution image sensor,” IEEE Trans. Circuits Syst. Video Techol. 7, 575–583 (1997). [CrossRef]
  17. J. Parent and S. Thibault, “Locally magnifying imager,” Opt. Express 19, 5676–5689 (2011). [CrossRef]
  18. L. Marcenaro, L. Marchesotti, and C. S. Regazzoni, “A multi-resolution outdoor dual camera system for robust video-event meta data extraction,” in Proceedings of International Society of Information Fusion (ISIF, 2002), pp. 1184–1189.
  19. N. Bellotto, E. Sommerlade, B. Benfold, C. Bibby, I. Reid, D. Roth, C. Fernández, L. V. Gool, and J. Gonzàlez, “A distributed camera system for multi-resolution surveillance,” in Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC, 2009).
  20. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. T. Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008). [CrossRef]
  21. M. Shankar, R. Willett, N. Pitsianis, R. T. Kolste, C. Chen, R. Gibbons, and D. J. Brady, “Ultra-thin multiple-channel LWIR imaging systems,” Proc. SPIE 6294, 629411 (2006). [CrossRef]
  22. J. H. Park, H. M. Oh, and M. G. Kang, “Multi-camera imaging system using super-resolution,” in 23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC, 2008), pp. 465–468.
  23. P. Milojkovic, J. Gill, D. Frattin, K. Coyle, K. Haack, S. Myhr, D. Rajan, S. Douglas, P. Papamichalis, M. Somayaji, M. P. Christensen, K. Krapels, “Multichannel, agile, computationally enhanced camera based on PANOPTES architecture,” in Computational Optical Sensing and ImagingOSA Technical Digest (CD) (Optical Society of America, 2009), paper CTuB4.
  24. P. Viola and M. Jones, “Robust real-time object detection,” in Second International Workshop on Statistical and Computational Theories of Vision—Modeling, Learning, Computing, and Sampling (2001).
  25. A. J. Lipton, J. I. W. Clark, B. Thompson, G. Myers, Z. Zhang, S. Titus, and P. L. Venetianer, “The intelligent vision sensor: turning video into information,” in IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS, 2007), pp. 63–68.
  26. D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of pedestrian detection for advanced driver assistance systems,” IEEE Trans. Pattern Anal. Machine Intell. 32, 1239–1258 (2010). [CrossRef]
  27. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2005), pp. 886–893.
  28. Q. Zhu, S. Avidan, M. C. Yeh, and K. T. Cheng, “Fast human detection using a cascade of histograms of oriented gradients,” in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1491–1498.
  29. Y. Freund and R. E. Schapire, “A short introduction to boosting,” J. Japanese Society Artificial Intelligence 14, 771–780 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited