OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4818–4826

Characterization of a low-speckle laser line generator

Gordon Craggs, Youri Meuret, Jan Danckaert, and Guy Verschaffelt  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4818-4826 (2012)
http://dx.doi.org/10.1364/AO.51.004818


View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The goal of our investigation is to design a low-speckle laser line generator based on partial spatially coherent laser light. Low speckle is achieved by exploiting a regime of strongly reduced spatial coherence of a broad-area vertical-cavity surface-emitting laser, which is used as the line generator’s light source. A comparative experimental study of different optical configurations is conducted, leading to the design of an optimal optical system. The results of our study are also valid for other sources of partial spatially coherent emission.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.6140) Coherence and statistical optics : Speckle
(140.3300) Lasers and laser optics : Laser beam shaping
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Imaging Systems

History
Original Manuscript: March 16, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 12, 2012
Published: July 9, 2012

Citation
Gordon Craggs, Youri Meuret, Jan Danckaert, and Guy Verschaffelt, "Characterization of a low-speckle laser line generator," Appl. Opt. 51, 4818-4826 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004). [CrossRef]
  2. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [CrossRef]
  3. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2006).
  4. R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991). [CrossRef]
  5. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994). [CrossRef]
  6. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998). [CrossRef]
  7. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010). [CrossRef]
  8. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010). [CrossRef]
  9. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008). [CrossRef]
  10. F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009). [CrossRef]
  11. F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009). [CrossRef]
  12. C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).
  13. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006). [CrossRef]
  14. A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001). [CrossRef]
  15. M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005). [CrossRef]
  16. S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008). [CrossRef]
  17. G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009). [CrossRef]
  18. G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009). [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  20. P. Vahimaa and J. Turunen, “Finite-elementary-source model for partially coherent radiation,” Opt. Express 14, 1376–1381 (2006). [CrossRef]
  21. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990). [CrossRef]
  22. C. Degen, I. Fischer, and W. Elsässer, “Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects,” Opt. Express 5, 38–47 (1999). [CrossRef]
  23. M. Peeters, G. Verschaffelt, J. Speybrouck, J. Danckaert, H. Thienpont, P. Vahimaa, and J. Turunen, “Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser,” Opt. Lett. 31, 1178–1180 (2006).
  24. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009). [CrossRef]
  25. H. W. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef]
  26. H. W. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  27. J. Arnaud, “Representation of Gaussian beams by complex rays,” Appl. Opt. 24, 538–543 (1985). [CrossRef]
  28. T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited