OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 20 — Jul. 10, 2012
  • pp: 4841–4851

High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound

João Marcos Salvi Sakamoto, Cláudio Kitano, Gefeson Mendes Pacheco, and Bernhard Rainer Tittmann  »View Author Affiliations


Applied Optics, Vol. 51, Issue 20, pp. 4841-4851 (2012)
http://dx.doi.org/10.1364/AO.51.004841


View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we report on the development of an intensity-modulated fiber-optic sensor for angular displacement measurement. This sensor was designed to present high sensitivity, linear response, and wide bandwidth and, furthermore, to be simple and low cost. The sensor comprises two optical fibers, a positive lens, a reflective surface, an optical source, and a photodetector. A mathematical model was developed to determine and simulate the static characteristic curve of the sensor and to compare different sensor configurations regarding the core radii of the optical fibers. The simulation results showed that the sensor configurations tested are highly sensitive to small angle variation (in the range of microradians) with nonlinearity less than or equal to 1%. The normalized sensitivity ranges from (0.25×Vmax) to (2.40×Vmax)mV/μrad (where Vmax is the peak voltage of the static characteristic curve), and the linear range is from 194 to 1840 μrad. The unnormalized sensitivity for a reflective surface with reflectivity of 100% was measured as 7.7mV/μrad. The simulations were compared with experimental results to validate the mathematical model and to define the most suitable configuration for ultrasonic detection. The sensor was tested on the characterization of a piezoelectric transducer and as part of a laser ultrasonics setup. The velocities of the longitudinal, shear, and surface waves were measured on aluminum samples as 6.43, 3.17, and 2.96mm/μs, respectively, with an error smaller than 1.3%. The sensor, an alternative to piezoelectric or interferometric detectors, proved to be suitable for detection of ultrasonic waves and to perform time-of-flight measurements and nondestructive inspection.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(280.3375) Remote sensing and sensors : Laser induced ultrasonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 3, 2012
Revised Manuscript: May 18, 2012
Manuscript Accepted: May 23, 2012
Published: July 9, 2012

Citation
João Marcos Salvi Sakamoto, Cláudio Kitano, Gefeson Mendes Pacheco, and Bernhard Rainer Tittmann, "High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound," Appl. Opt. 51, 4841-4851 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-20-4841

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited