OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 4927–4935

OCT skin image enhancement through attenuation compensation

Ali Hojjatoleslami and Mohammad R. N. Avanaki  »View Author Affiliations

Applied Optics, Vol. 51, Issue 21, pp. 4927-4935 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhancement of optical coherence tomography (OCT) skin images can help dermatologists investigate the morphologic information of the images more effectively. In this paper, we propose an enhancement algorithm with the stages that includes speckle reduction, skin layer detection, and attenuation compensation. A weighted median filter is designed to reduce the level of speckle while preserving the contrast. A novel skin layer detection technique is then applied to outline the main skin layers: stratum corneum, epidermis, and dermis. The skin layer detection algorithm does not make any assumption about the structure of the skin. A model of the light attenuation is then used to estimate the attenuation coefficient of the stratum corneum, epidermis, and dermis layers. The performance of the algorithm has been evaluated qualitatively based on visual evaluation and quantitatively using two no-reference quality metrics: signal-to-noise ratio and contrast-to-noise ratio. The enhancement algorithm is tested on 35 different skin OCT images, which show significant improvements in the quality of the images, especially in the structures at deeper levels.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.3000) Imaging systems : Image quality assessment

ToC Category:
Imaging Systems

Original Manuscript: February 17, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 24, 2012
Published: July 11, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Ali Hojjatoleslami and Mohammad R. N. Avanaki, "OCT skin image enhancement through attenuation compensation," Appl. Opt. 51, 4927-4935 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78, 976–988 (2005). [CrossRef]
  2. M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988). [CrossRef]
  3. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17, 1256–1267 (2009). [CrossRef]
  4. M. Avanaki, S. Hojjatoleslami, and A. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009). [CrossRef]
  5. A. M. Schmitt, “Principles and application of optical coherent tomography in dermatology.” Dermatology 217, 14–20 (2008). [CrossRef]
  6. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9. (2001). [CrossRef]
  7. M. R. N. Avanaki and A. Hojjatoleslami, “Speckle reduction with attenuation compensation for skin OCT images enhancement,” in Proceedings of Medical Image Understanding and Analysis (MIUA, 2009), pp. 179–183.
  8. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” Scanning 20, 27–30 (2007).
  9. M. Arnfield, J. Tulip, and M. McPhee, “Optical propagation in tissue with anisotropic scattering,” IEEE Trans. Biomed. Eng. 35, 372–381 (1988). [CrossRef]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147–149 (2005). [CrossRef]
  11. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18, 948–953 (2001). [CrossRef]
  12. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution” Electron. Lett. 33, 1365–1367 (1999). [CrossRef]
  13. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47, 641–655 (2002). [CrossRef]
  14. G. Deng, L. Cahill, and G. Tobin, “The study of logarithmic image processing model and its application to image enhancement” IEEE Trans. Image Process. 4, 506–512 (1995). [CrossRef]
  15. R. H. Sherrier and G. Johnson, “Regionally adaptive histogram equalization of the chest,” IEEE Trans. Med. Imaging 6, 1–7 (1987). [CrossRef]
  16. R. Highnam and M. Brady, “Model-based image enhancement of far infrared images,” IEEE Trans. Pattern Anal. Machine Intell. 19, 410–417 (1997). [CrossRef]
  17. L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Machine Intell. 20, 777–789 (1998). [CrossRef]
  18. N. Villain, Y. Goussard, J. Idier, and M. Allain, “Three-dimensional edge-preserving image enhancement for computed tomography,” IEEE Trans. Med. Imaging 22, 1275–1287 (2003). [CrossRef]
  19. X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing,” IEEE Trans. Med. Imaging 17, 532–540 (1998). [CrossRef]
  20. J. Xie, Y. Jiang, H. T. Tsui, and P. A. Heng, “Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction,” IEEE Trans. Biomed. Eng. 53, 2300–2309 (2006). [CrossRef]
  21. M. Hughes and A. G. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623 (2009). [CrossRef]
  22. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997). [CrossRef]
  23. B. Blomgren, U. Johannesson, N. Bohm-Starke, C. Falconer, and M. Hilliges, “A computerised, unbiased method for epithelial measurement,” Micron 35, 319–329 (2004). [CrossRef]
  24. R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997). [CrossRef]
  25. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, “Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography,” J. Biophotonics 3, 25–33 (2010). [CrossRef]
  26. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, and T. Araki, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006). [CrossRef]
  27. P. Therkildsen, M. Haedersdal, J. Lock-Andersen, F. Fine Olivarius, T. Poulsen, and H. C. Wulf, “Epidermal thickness measured by light microscopy: a methodological study,” Skin Res. Technol. 4, 174–179 (1998). [CrossRef]
  28. J. Sanders, B. Goldstein, D. Leotta, and K. Richards, “Image processing techniques for quantitative analysis of skin structures,” Comput. Methods Programs Biomed. 59, 167–180 (1999). [CrossRef]
  29. C. K. Mauck, M. M. Callahan, J. Baker, K. Arbogast, R. Veazey, R. Stock, Z. Pan, C. S. Morrison, M. Chen-Mok, and D. F. Archer, “The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy,” Contraception 60, 15–24 (1999). [CrossRef]
  30. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type, and smoking habits,” Acta Derm. Venereol. 83, 410–413 (2003). [CrossRef]
  31. K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, and J. Ennen, “Age-related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo,” Skin Res. Technol. 8, 52–56 (2002). [CrossRef]
  32. J. Su and W. Dai, “Post-route optimization for improved yield using a rubber-bandwiring model,” in 1997 IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (IEEE, 1997), pp. 700–706.
  33. Michelson Diagnostics, “How breakthrough multi-beam OCT imaging works,” http://www.md-ltd.co.uk/our-technology.html .
  34. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989). [CrossRef]
  35. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology 217, 14–20 (2008). [CrossRef]
  36. C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.
  37. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron 26, 2166–2185 (1990). [CrossRef]
  38. A. J. Welch and M. J. C. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Springer, 2011).
  39. W. Yang, W. Cao, T. S. Chung, and J. Morris, Applied Numerical Methods Using MATLAB. (Wiley, 2005).
  40. Y. Feng, R. K. Wang, and J. B. Elder, “Theoretical model of optical coherence tomography for system optimization and characterization,” J. Opt. Soc. Am. A 20, 1792–1803 (2003). [CrossRef]
  41. T. B. Fitzpatrick, “Soleil et pau,” J. Med. Esthetics 2, 33–34 (1975).
  42. G. Lamouche, C. E. Bisaillon, S. Vergnole, and J. Monchalin, “On the speckle size in optical coherence tomography,” Proc. SPIE 6847, 684724 (2008). [CrossRef]
  43. M. R. N. Avanaki, P. P. Laissue, A. Gh. Podoleanu, A. Aber, and S. A. Hojjatoleslami, “Evaluation of wavelet mother functions for speckle noise suppression in OCT images,” Int. J. Graphics Bioinf. Med. Eng. 11, 1–5 (2011).
  44. M. R. Nasiri-Avanaki and R. Ebrahimpour, “In-service video quality measurements in optical fiber links based on neural network,” J. Neural Network World 17, 457–464 (2007).
  45. T. Gambichler, S. Boms, M. Stücker, G. Moussa, A. Kreuter, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology,” Arch. Dermatol. Res. 297, 218–225 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited