OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 4936–4944

Fabrication of concave and convex potassium bromide lens arrays by compression molding

Florence de la Barrière, Guillaume Druart, Nicolas Guèrineau, Jean Taboury, Alain Gueugnot, and Vincent Huc  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 4936-4944 (2012)
http://dx.doi.org/10.1364/AO.51.004936


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new simple and cost-effective method has been developed for the fabrication of both plano-convex and plano-concave lens arrays with potentially important sag heights. The process is based on the use of potassium bromide (KBr) powder. At ambient temperature and under pressure, KBr powder is compressed on a molding die with the desired shape to form a solid lens array. The quality of the lens arrays has been assessed, and we present the first image produced by a converging KBr lens array.

© 2012 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: March 14, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 1, 2012
Published: July 11, 2012

Citation
Florence de la Barrière, Guillaume Druart, Nicolas Guèrineau, Jean Taboury, Alain Gueugnot, and Vincent Huc, "Fabrication of concave and convex potassium bromide lens arrays by compression molding," Appl. Opt. 51, 4936-4944 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-4936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989). [CrossRef]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003). [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (Tanida): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310(2004). [CrossRef]
  5. J. Duparré, P. Dannberg, P. Schreiber, A. Brouer, and A. Tünnermann, “Thin compound eye camera,” Appl. Opt. 44, 2949–2956 (2005). [CrossRef]
  6. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010). [CrossRef]
  7. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bäuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011). [CrossRef]
  8. G. Druart, N. Guèrineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “ Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009). [CrossRef]
  9. F. de la Barrière, G. Druart, N. Guérineau, G. Lasfargues, M. Fendler, N. Lhermet, and J. Taboury, “Compact infrared wafer-level camera: design and experimental validation,” Appl. Opt. 51, 1049–1060 (2012). [CrossRef]
  10. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12, 1643–1655 (2004). [CrossRef]
  11. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J. L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96, 221104 (2010). [CrossRef]
  12. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). [CrossRef]
  13. D. Purdy, “Fabrication of complex micro-optic components using photo-sculpturing through halftone transmission masks,” Appl. Opt. 3, 167–175 (1994).
  14. M. T. Gales, G. K. Lang, J. M. Raynor, and H. Schütz, “Fabrication of micro-optical elements by laser beam writing in photoresist,” Proc. SPIE 1506, 65–70 (1991). [CrossRef]
  15. http://www.suss-microoptics.com .
  16. M. He, X. Yuan, J. Bu, and W. C. Cheong, “Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique,” Opt. Lett. 29, 1007–1009 (2004). [CrossRef]
  17. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, “Two-step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16, 19541–19549 (2008). [CrossRef]
  18. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010). [CrossRef]
  19. R. Gläbe, and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602 (2010). [CrossRef]
  20. S. Scheiding, A. Gebhardt, R. Eberhardt, and A. Tünnermann, “Microlens array milling on large wafers,” Optik & Photonik 4 (2009).
  21. G. Curatu, B. Binkley, D. Tinch, and C. Curatu, “Using chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging system,” Proc. SPIE 6206, 6206O (2006).
  22. D. H. Cha, H.-J. Kim, H. S. Park, Y. Hwang, J.-H. Kim, J.-H. Hong, and K.-S. Lee, “Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications,” Appl. Opt. 49, 1607–1613 (2010). [CrossRef]
  23. K. J. Ma, H. H. Chien, S. W. Huang, W. Y. Fu, and C. L. Chao, “Contactless molding of arrayed chalcognide glass lenses,” J. Non-Cryst. Solids 357, 2484–2488 (2011). [CrossRef]
  24. J. Orava, T. Kohoutek, L. A. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011). [CrossRef]
  25. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011). [CrossRef]
  26. M. Silvennoinen, K. Paivasaari, J. J. J. Kaakkunen, V. K. Tikhomirov, A. Lehmuskero, P. Vahimaa, and V. V. Moshchalkov, “Imprinting the nanostructures on the high refractive index semiconductor glass,” Appl. Surf. Sci. 257, 6829–6832 (2011). [CrossRef]
  27. T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, “Development of ZnS lenses for FIR cameras,” SEI Technical Review 69 (2009).
  28. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011). [CrossRef]
  29. G. C. Firestone, and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays–an experimental study,” Appl. Opt. 44, 6115–6122 (2005). [CrossRef]
  30. A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006). [CrossRef]
  31. C. Y. Huang, W. T. Hsiao, K. C. Huang, K. S. Chang, H. Y. Chou, and C. P. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21, 085020 (2011). [CrossRef]
  32. S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13, 98–103 (2003). [CrossRef]
  33. L. Li, P. He, F. Wang, K. Georgiadis, O. Dambon, F. Klocke, and A. Y. Yi, “A hybrid polymerglass achromatic microlens array fabricated by compression molding,” J. Opt. 13, 055407 (2011). [CrossRef]
  34. F. Klocke, O. Dambon, and B. Bulla, “Diamond turning of aspheric steel molds for optics replication,” Proc. SPIE 7590, 75900B (2010). [CrossRef]
  35. E. D. Palik, Handbook of Optical Constants of Solids(Academic Press, 1991), Vol. II, pp. 989.
  36. L. M. Harwood and C. J. Moody, Experimental Organic Chemistry: Standard and Microscale, 2nd.ed. (Wiley-Blackwell, 1989), Chapt. 5, pp. 292.
  37. http://www.savimex.eu .
  38. http://www.rsp-technology.com .
  39. http://www.taylor-hobson.com/uploads/images/talysurf-cci-6000.pdf .
  40. http://www.altimet.fr .
  41. http://www.stilsa.com/index.htm .
  42. http://www.phasics.fr .
  43. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, pp. 211–228.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited