OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 4954–4970

Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders

Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Valentín Martínez Pillet  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 4954-4970 (2012)
http://dx.doi.org/10.1364/AO.51.004954


View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the study, characterization, and calibration of the polarization modulation package (PMP) of the Imaging Magnetograph eXperiment (IMaX) instrument, a successful Stokes spectropolarimeter on board the SUNRISE balloon project within the NASA Long Duration Balloon program. IMaX was designed to measure the Stokes parameters of incoming light with a signal-to-noise ratio of at least 10 3 , using as polarization modulators two nematic liquid-crystal variable retarders (LCVRs). An ad hoc calibration system that reproduced the optical and environmental characteristics of IMaX was designed, assembled, and aligned. The system recreates the optical beam that IMaX receives from SUNRISE with known polarization across the image plane, as well as an optical system with the same characteristics of IMaX. The system was used to calibrate the IMaX PMP in vacuum and at different temperatures, with a thermal control resembling the in-flight one. The efficiencies obtained were very high, near theoretical maximum values: the total efficiency in vacuum calibration at nominal temperature was 0.972 (1 being the theoretical maximum). The condition number of the demodulation matrix of the same calibration was 0.522 (0.577 theoretical maximum). Some inhomogeneities of the LCVRs were clear during the pixel-by-pixel calibration of the PMP, but it can be concluded that the mere information of a pixel-per-pixel calibration is sufficient to maintain high efficiencies in spite of inhomogeneities of the LCVRs.

© 2012 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.3720) Optical devices : Liquid-crystal devices
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Optical Devices

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 29, 2012
Manuscript Accepted: March 30, 2012
Published: July 11, 2012

Citation
Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Valentín Martínez Pillet, "Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders," Appl. Opt. 51, 4954-4970 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-4954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Garcia-Caurel, A. D. Martino, and B. Drvillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455–456, 120–123 (2004). [CrossRef]
  2. L. M. S. Aas, P. G. Ellingsen, M. Kildemo, and M. Lindgren, “Dynamic response of a fast near infra-red mueller matrix ellipsometer,” J. Mod. Opt. 57, 1603–1610 (2010). [CrossRef]
  3. J. M. Bueno and P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999). [CrossRef]
  4. M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, “Imaging polarimetry in central serous chorioretinopathy,” Am. J. Ophthalmol. 140, 1014–1019 (2005). [CrossRef]
  5. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006). [CrossRef]
  6. F. Goudail, P. Terrier, Y. Takakura, L. Bigu, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004). [CrossRef]
  7. L. Zangrilli, S. Fineschi, G. Massone, G. Capobianco, F. Porcu, and P. Calcidese, “EKPol: liquid crystal polarimeter for eclipse observations of the K-Corona,” in Solar Physics and Solar Eclipses (SPSE 2006)J. O. Stenflo, ed. (Istituto Ricerche Solari Locarno, 2006), pp. 37–45.
  8. F. Snik, F. C. M. Bettonvil, A. P. L. Jägers, R. H. Hammerschlag, R. J. Rutten, and C. U. Keller, “The Ba II 4554/Hβ imaging polarimeter for the Dutch Open Telescope,” in Solar Polarization 4, Vol. 358 of Astronomical Society of the Pacific Conference Series, R. Casini and B. W. Lites, ed. (2006), pp. 205–208.
  9. P. N. Bernasconi, D. M. Rust, H. A. Eaton, and G. A. Murphy, “Balloon-borne telescope for high-resolution solar imaging and polarimetry,” Proc. SPIE 4014, 214–225 (2000). [CrossRef]
  10. T. F. Drouillard, P. A. Searcy, S. R. Davis, R. J. Uberna, R. A. Herke, M. H. Anderson, S. D. Rommel, E. B. Anthony, and V. B. Damiao, “Polarimetry using liquid crystal variable retarders,” Proc. SPIE 5363, 86–97 (2004). [CrossRef]
  11. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  12. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, and E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” Proc. SPIE 3754, 137–143 (1999). [CrossRef]
  13. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000). [CrossRef]
  14. R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez-Pillet, and A. Álvarez-Herrero, “Liquid crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698 (2007). [CrossRef]
  15. N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro Iniesta, A. C. Jimenez, V. Lopez Domingo, J. L. Gasent, L. Jochum, and V. Martínez Pillet, and The IMaX Team, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5, 1041–1045 (2008). [CrossRef]
  16. V. Martínez Pillet, J. del Toro Iniesta, A. Álvarez-Herrero, V. Domingo, J. Bonet, L. González Fernández, A. López Jiménez, C. Pastor, J. L. Gasent Blesa, P. Mellado, J. Piqueras, B. Aparicio, M. Balaguer, E. Ballesteros, T. Belenguer, L. R. Bellot Rubio, T. Berkefeld, M. Collados, W. Deutsch, A. Feller, F. Girela, B. Grauf, R. Heredero, M. Herranz, J. Jerónimo, H. Laguna, R. Meller, M. Menéndez, R. Morales, D. Orozco Suárez, G. Ramos, M. Reina, J. Ramos, P. Rodríguez, A. Sánchez, N. Uribe-Patarroyo, P. Barthol, A. Gandorfer, M. Knoelker, W. Schmidt, S. Solanki, and S. Vargas Domínguez, “The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory,” Sol. Phys. 268, 57–102 (2011). [CrossRef]
  17. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969). [CrossRef]
  18. G. E. Jellison and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997). [CrossRef]
  19. E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum. 69, 1574–1580 (1998). [CrossRef]
  20. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive stokes polarimeter,” Appl. Opt. 43, 274–282 (2004). [CrossRef]
  21. D. G. Corr, S. R. Cloude, L. Ferro-Famil, D. H. Hoekman, K. Partington, E. Pottier, and A. Rodrigues, “A review of the applications of SAR polarimetry and polarimetric interferometry—an ESA-funded study,” in Applications of SAR Polarimetry and Polarimetric Interferometry, Vol. 529 of ESA Special Publications (2003).
  22. L. J. November and L. M. Wilkins, “Liquid crystal polarimeter: a solid state imager for solar vector magnetic fields,” Opt. Eng. 34, 1659–1668 (1995). [CrossRef]
  23. V. Mártinez Pillet, M. Collados, J. Sánchez Almeida, V. González, A. Cruz-Lopez, A. Manescau, E. Joven, E. Paez, J. Diaz, O. Feeney, V. Sánchez, G. Scharmer, and D. Soltau, “LPSP & TIP: full Stokes polarimeters for the Canary Islands observatories,” in High Resolution Solar Physics: Theory, Observations, and Techniques, Vol. 183 of Astronomical Society of the Pacific Conference Series, T. R. Rimmele, K. S. Balasubramaniam, and R. R. Radick, eds. (1999), pp. 264–272.
  24. P. Barthol, A. Gandorfer, S. Solanki, M. Schüssler, B. Chares, W. Curdt, W. Deutsch, A. Feller, D. Germerott, B. Grauf, K. Heerlein, J. Hirzberger, M. Kolleck, R. Meller, R. Müller, T. Riethmüller, G. Tomasch, M. Knölker, B. Lites, G. Card, D. Elmore, J. Fox, A. Lecinski, P. Nelson, R. Summers, A. Watt, V. Martínez Pillet, J. Bonet, W. Schmidt, T. Berkefeld, A. Title, V. Domingo, J. Gasent Blesa, J. del Toro Iniesta, A. López Jiménez, A. Álvarez-Herrero, L. Sabau-Graziati, C. Widani, P. Haberler, K. Härtel, D. Kampf, T. Levin, I. Pérez Grande, A. Sanz-Andrés, and E. Schmidt, “The Sunrise mission,” Sol. Phys. 268, 1–34 (2011). [CrossRef]
  25. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
  26. A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez Pillet, A. Álvarez Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI),” J. Phys. Conf. Ser. 271, 012086 (2011). [CrossRef]
  27. A. Alvarez-Herrero, N. Uribe-Patarroyo, P. G. Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martinez-Pillet, J. C. del Toro Iniesta, A. Lopez, S. Fineschi, G. Capobianco, M. Georges, M. Lopez, G. Boer, and I. Manolis, “Imaging polarimeters based on liquid crystal variable retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011). [CrossRef]
  28. J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39, 1637–1642 (2000). [CrossRef]
  29. N. Uribe-Patarroyo and A. Alvarez-Herrero, “Determination of the molecular tilt profile of a liquid crystal under applied electric field by generalized transmission ellipsometry,” J. Opt. Soc. Am. B 26, 1188–1195 (2009). [CrossRef]
  30. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002). [CrossRef]
  31. J. Wolfe and R. A. Chipman, “Reducing symmetric polarization aberrations in a lens by annealing,” Opt. Express 12, 3443–3451 (2004). [CrossRef]
  32. E. Compain and B. Drevillon, “Complete high-frequency measurement of Mueller matrices based on a new coupled-phase modulator,” Rev. Sci. Instrum. 68, 2671–2680(1997). [CrossRef]
  33. A. de Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004). [CrossRef]
  34. J. S. Tyo, “Noise equalization in stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  35. M. Collados, “High resolution spectropolarimetry and magnetography,” in Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, Vol. 184 of Astronomical Society of the Pacific Conference Series, B. Schmieder, A. Hofmann, and J. Staude, eds. (1999), pp. 3–22.
  36. S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited