OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5019–5027

Nanoscale all-optical plasmonic switching using electromagnetically induced transparency

Ghassem Rostami, Mahmoud Shahabadi, Ali Afzali Kusha, and Ali Rostami  »View Author Affiliations

Applied Optics, Vol. 51, Issue 21, pp. 5019-5027 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical switch composed of two interacting nanoparticles in front of an optical dielectric slab waveguide is proposed. An incident optical signal is coupled to the optical waveguide after scattering by the two nanoparticles. The scattered fields interfere constructively or destructively depending on the degree of optical transparency the nanoparticles induced by an optical control signal. The considered nanoparticles have a metallic core coated by an outer shell with three-level clusters such that the nanoparticles can exhibit electromagnetically induced transparency. A dipole-approximation model-based analysis reveals that a high rejection ratio can be achieved using the proposed configuration.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7020) Optical devices : Traveling-wave devices
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(130.4815) Integrated optics : Optical switching devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: January 6, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 11, 2012
Published: July 11, 2012

Ghassem Rostami, Mahmoud Shahabadi, Ali Afzali Kusha, and Ali Rostami, "Nanoscale all-optical plasmonic switching using electromagnetically induced transparency," Appl. Opt. 51, 5019-5027 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008). [CrossRef]
  2. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photon. 4, 3–5 (2010). [CrossRef]
  3. S. A. Maier, Plasmonic: Fundamentals and Applications (Springer, 2007).
  4. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007). [CrossRef]
  5. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20, 3528–3532 (2008). [CrossRef]
  6. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010). [CrossRef]
  7. G. Rostami, M. Shahabadi, A. Afzali-Kusha, and A. Rostami, “EIT based tunable metal composite spherical nanoparticle,” Photon. Nano. Fund. Appl. 10, 102–111 (2012). [CrossRef]
  8. A. V. Gopal, T. Simoyama, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, “Intersubband absorption saturation in InGaAs-AlAs-AlAsSb coupled quantum wells,” IEEE J. Quantum Electron. 39, 1356–1361 (2003). [CrossRef]
  9. R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996). [CrossRef]
  10. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric mach—zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3932 (2001). [CrossRef]
  11. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, Heongkyu, J. Huug de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 10, 1079–1092 (2004). [CrossRef]
  12. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006). [CrossRef]
  13. P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16, 10956–10961 (2008). [CrossRef]
  14. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Select. Top. Quantum Electron. 14, 938–945 (2008). [CrossRef]
  15. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic device,” IEEE J. Select. Top. Quantum Electron. 12, 1214–1220 (2006). [CrossRef]
  16. S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Select. Top. Quantum Electron. 12, 1671–1677 (2006). [CrossRef]
  17. D. Prot, D. B. Stout, J. Lafait, N. Pincon, B. Palpant, and S. Debrus, “Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials,” J. Opt. A: Pure Appl. Opt. 4, S99–S102 (2002). [CrossRef]
  18. G. H. Yuan, X-C. Yuan, D. G. Zhang, P. Wang, H. Ming, and T. Mei, “Numerical demonstration of all-optical switching in dielectric-loaded surface plasmon polaritonic crystals with a defect mode,” J. Opt. A: Pure Appl. Opt. 11, 085005 (2009). [CrossRef]
  19. N.-C. Kim, J.-B. Li, Z.-J. Yang, Z.-H. Hao, and Q.-Q. Wang, “Switching of a single propagating plasmon by two quantum dots system,” Appl. Phys. Lett. 97, 061110 (2010). [CrossRef]
  20. C. Milian and D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on the metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011). [CrossRef]
  21. J. J. Xiao, K. Yakubo, and K. W. Yu, “Optical switching in graded plasmonic waveguides,” Appl. Phys. Lett. 88, 241111 (2006). [CrossRef]
  22. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef]
  23. V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt. 39, 853–861 (1992). [CrossRef]
  24. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989). [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  26. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).
  27. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited