OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5028–5037

Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms

Fengzhao Dai, Feng Tang, Xiangzhao Wang, Osami Sasaki, and Peng Feng  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5028-5037 (2012)
http://dx.doi.org/10.1364/AO.51.005028


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Four modal methods of reconstructing a wavefront from its difference fronts based on Zernike polynomials in lateral shearing interferometry are currently available, namely the Rimmer–Wyant method, elliptical orthogonal transformation, numerical orthogonal transformation, and difference Zernike polynomial fitting. The present study compared these four methods by theoretical analysis and numerical experiments. The results show that the difference Zernike polynomial fitting method is superior to the three other methods due to its high accuracy, easy implementation, easy extension to any high order, and applicability to the reconstruction of a wavefront on an aperture of arbitrary shape. Thus, this method is recommended for use in lateral shearing interferometry for wavefront reconstruction.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 6, 2012
Revised Manuscript: June 4, 2012
Manuscript Accepted: June 12, 2012
Published: July 11, 2012

Citation
Fengzhao Dai, Feng Tang, Xiangzhao Wang, Osami Sasaki, and Peng Feng, "Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms," Appl. Opt. 51, 5028-5037 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Nomura, K. Kamiya, S. Okuda, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “Shape measurements of mirror surfaces with a lateral-shearing interferometer during machine running,” Precis. Eng. 22, 185–189 (1998). [CrossRef]
  2. P. Hegeman, X. Christmann, M. Visser, and J. Braat, “Experimental study of a shearing interferometer concept for at-wavelength characterization of extreme-ultraviolet optics,” Appl. Opt. 40, 4526–4533 (2001). [CrossRef]
  3. J. C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt. 44, 1559–1571 (2005). [CrossRef]
  4. M. P. Rimmer, “Method for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623–629 (1974). [CrossRef]
  5. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977). [CrossRef]
  6. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977). [CrossRef]
  7. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69, 393–399(1979). [CrossRef]
  8. J. Herrmann, “Least-squares wave front errors with minimum norm,” J. Opt. Soc. Am. 70, 28–35 (1980). [CrossRef]
  9. X. Liu, Y. Gao, and M. Chang, “A partial differential equation algorithm for wavefront reconstruction in lateral shearing interferometry,” J. Opt. A 11, 045702 (2009). [CrossRef]
  10. P. Liang, J. Ding, Z. Jin, C. S. Guo, and H. T. Wang, “Two-dimensional wave-front reconstruction from lateral shearing interferograms,” Opt. Express 14, 625–634 (2006). [CrossRef]
  11. J. Herrmann, “Cross coupling and aliasing in modal wavefront estimation,” J. Opt. Soc. Am. 71, 989–992 (1981). [CrossRef]
  12. K. R. Freischlad and C. L. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986). [CrossRef]
  13. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975). [CrossRef]
  14. D. Korwan, “Lateral shearing interferogram analysis,” Proc. SPIE 429, 194–198 (1983). [CrossRef]
  15. W. Shen, M. Chang, and D. Wan, “Zernike polynomial fitting of lateral shearing interferometry,” Opt. Eng. 36, 905–913 (1997). [CrossRef]
  16. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162–6172 (1996). [CrossRef]
  17. G. Leibbrandt, G. Harbers, and P. Kunst, “Wave-front analysis with high accuracy by use of a double-grating lateral shearing interferometer,” Appl. Opt. 35, 6151–6161 (1996). [CrossRef]
  18. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, S. Grilli, I. Gurov, and V. Chugunov, “Wave front aberration analysis in two beam reversal shearing interferometry by elliptical Zernike polynomials,” Proc. SPIE 5481, 27–36 (2004). [CrossRef]
  19. F. Dai, F. Tang, X. Wang, P. Feng, and O. Sasaki, “Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms,” Opt. Express 20, 1530–1544 (2012). [CrossRef]
  20. K. Sugisaki, M. Okada, K. Otaki, Y. Zhu, J. Kawakami, K. Murakami, C. Ouchi, M. Hasegawa, S. Kato, T. Hasegawa, H. Yokota, and T. Honda, “EUV wavefront measurement of six-mirror optics using EWMS,” Proc. SPIE 6921, 69212U (2008). [CrossRef]
  21. H. von Brug, “Zernike polynomials as a basis for wave-front fitting in lateral shearing interferometry,” Appl. Opt. 36, 2788–2790 (1997). [CrossRef]
  22. S. Okuda, T. Nomura, K. Kazuhide, H. Miyashiro, H. Hatsuzo, and K. Yoshikawa, “High precision analysis of lateral shearing interferogram using the integration method and polynomials,” Appl. Opt. 39, 5179–5186 (2000). [CrossRef]
  23. G.-M. Dai, “Modal wavefront reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 13, 1218–1225 (1996). [CrossRef]
  24. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. A 70, 998–1006 (1980). [CrossRef]
  25. J. C. Wyant and K. Creath, Basic Wavefront Aberration Theory for Optical Metrology, Vol. 11 of Applied Optics and Optical Engineering Series (Academic, 1992), p. 28.
  26. G.-M. Dai and V. N. Mahajan, “Nonrecursive orthonormal polynomials with matrix formulation,” Opt. Lett. 32, 74–76 (2007). [CrossRef]
  27. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33, 8121–8124 (1994). [CrossRef]
  28. Y. Zhu, K. Sugisaki, K. Murakami, K. Ota, H. Kondo, M. Ishi, J. Kawakami, T. Oshino, J. Saito, A. Suzuki, M. Hasegawa, Y. Sekine, S. Takeuchi, C. Ouchi, O. Kakuchi, Y. Watanabe, T. Hasegawa, and S. Hara, “Shearing interferometry for at wavelength wavefront measurement of extreme-ultraviolet lithography projection optics,” Jpn. J. Appl. Phys. 42, 5844–5847 (2003). [CrossRef]
  29. A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited