OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5085–5099

Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles

Xiaodong Zhang, Deric J. Gray, Yannick Huot, Yu You, and Lei Bi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5085-5099 (2012)
http://dx.doi.org/10.1364/AO.51.005085


View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The volume scattering function (VSF) of particles in water depends on the particles’ size distribution and composition as well as their shape and internal structure. Inversion of the VSF thus provides information about the particle population. The commercially available LISST instrument measures the scattering at near forward angles to estimate the bulk size distribution of particles larger than about 1 μm. By using scattering over the full angular range (0°–180°), the recently improved VSF-inversion method [ZhangX.TwardowskiM.LewisM., Appl. Opt. 50, 1240 (2011).] can characterize particles in terms of particle subpopulations, which are described by their unique size distribution and composition. Concurrent deployments of the Multispectral Volume Scattering Meter and the LISST in three coastal waters (i.e., Chesapeake Bay, Mobile Bay, and Monterey Bay) allowed us to compare the size distributions derived from these two different methods. We also obtained indirect validation of the results for submicrometer particles and for the composition of particles provided by the VSF-inversion method. For particle sizes ranging from 1 to 100 μm, the concentration was shown to vary over 10 orders of magnitude, and excellent agreement was found between the two methods with a mean relative difference less than 10% for the total size distributions. The inversion results also reproduced spectral variations in the shape of the VSF, although these spectral variations were not frequently observed in our study. The increased backscattering towards the shorter wavelengths was explained by the stronger influence of submicrometer particles affecting the backscattering. Based on published measurements of cell sizes and intracellular chlorophyll-a [Chl] concentrations over a wide range of phytoplankton species and strains, [Chl] was estimated for the inverted subpopulations that were identified as phytoplankton based on their refractive index and mean sizes. The estimated [Chl] agreed well with the fluorescence-based estimates in both magnitude and trend, thus reproducing a bloom event observed at a time series station.

© 2012 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 17, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 1, 2012
Published: July 12, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Xiaodong Zhang, Deric J. Gray, Yannick Huot, Yu You, and Lei Bi, "Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles," Appl. Opt. 51, 5085-5099 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5085

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited