OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5130–5143

Estimation of a lidar’s overlap function and its calibration by nonlinear regression

Adam C. Povey, Roy G. Grainger, Daniel M. Peters, Judith L. Agnew, and David Rees  »View Author Affiliations

Applied Optics, Vol. 51, Issue 21, pp. 5130-5143 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The overlap function of a Raman channel for a lidar system is retrieved by nonlinear regression using an analytic description of the optical system and a simple model for the extinction profile, constrained by aerosol optical thickness. Considering simulated data, the scheme is successful even where the aerosol profile deviates significantly from the simple model assumed. Application to real data is found to reduce by a factor of 1.4–2.0 the root-mean-square difference between the attenuated backscatter coefficient as measured by the calibrated instrument and a commercial instrument.

© 2012 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 13, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: May 31, 2012
Published: July 13, 2012

Adam C. Povey, Roy G. Grainger, Daniel M. Peters, Judith L. Agnew, and David Rees, "Estimation of a lidar’s overlap function and its calibration by nonlinear regression," Appl. Opt. 51, 5130-5143 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Measures, Lidar Remote Sensing: Fundamentals and Applications, 2nd ed. (Krieger, 1992).
  2. T. Fujii and T. Fukuchi, Laser Remote Sensing (Taylor and Francis, 2005).
  3. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).
  4. J. D. Klett, “Lidar inversion with variable backscatter extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef]
  5. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef]
  6. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998). [CrossRef]
  7. I. Berezhnyy, “A combined diffraction and geometrical optics approach for lidar overlap function computation,” Opt. Lasers Eng. 47, 855–859 (2009). [CrossRef]
  8. T. Halldórsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978). [CrossRef]
  9. G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, “Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver,” Appl. Opt. 25, 2886–2890 (1986). [CrossRef]
  10. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzynski, T. Stacewicz, and L. Woste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44, 1323–1331 (2005). [CrossRef]
  11. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18, 3908–3910 (1979). [CrossRef]
  12. K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser-radar equation for days with a light mist,” Appl. Opt. 28, 2194–2195 (1989). [CrossRef]
  13. J. L. Guerrero-Rascado, M. J. Costa, D. Bortoli, A. M. Silva, H. Lyamani, and L. Alados-Arboledas, “Infrared lidar overlap function: An experimental determination,” Opt. Express 18, 20350–20359 (2010). [CrossRef]
  14. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41, 511–514 (2002). [CrossRef]
  15. S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 36, 6009–6010 (1997). [CrossRef]
  16. M. Adam, V. A. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2014–2028 (2007). [CrossRef]
  17. G. Biavati, G. Di Donfrancesco, F. Cairo, and D. G. Feist, “Correction scheme for close-range lidar returns,” Appl. Opt. 50, 5872–5882 (2011). [CrossRef]
  18. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic, and Planetary Physics, 2nd ed. (World Scientific, 2000).
  19. A. Gelb, Applied Optimal Estimation (Analytic Sciences Corporation, 1974).
  20. Q. S. He, C. C. Li, J. T. Mao, A. K. H. Lau, and D. A. Chu, “Analysis of aerosol vertical distribution and variability in Hong Kong,” J. Geophys. Res. Atmos. 113, D14211 (2008). [CrossRef]
  21. M. Wiegner, S. Emeis, V. Freudenthaler, B. Heese, W. Junkermann, C. Munkel, K. Schafer, M. Seefeldner, and S. Vogt, “Mixing layer height over Munich, Germany: variability and comparisons of different methodologies,” J. Geophys. Res. Atmos. 111, D13201 (2006). [CrossRef]
  22. R. Maurya, P. K. Dubey, B. C. Arya, and S. L. Jain, “Aerosol vertical profile measurements using micro pulse lidar at New Delhi, India,” presented at the International Symposium for the Advancement of Remote Sensing of the Boundary Layer, Guyancourt, France, 28–30June2010.
  23. D. G. Steyn, M. Baldi, and R. M. Hoff, “The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles,” J. Atmos. Ocean. Technol. 16, 953–959 (1999). [CrossRef]
  24. S. Chib and E. Greenberg, “Understanding the Metropolis–Hastings algorithm,” Am. Stat. 49, 327–335 (1995).
  25. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef]
  26. M. Kitchen, “Representativeness errors for radiosonde observations,” Q. J. R. Meteorol. Soc. 115, 673–700 (1989). [CrossRef]
  27. C. Marks and C. Rodgers, “A retrieval method for atmospheric composition from limb emission measurements,” J. Geophys. Res. Atmos. 98, 14939–14953 (1993). [CrossRef]
  28. P. Palmer, J. Barnett, J. Eyre, and S. Healy, “A nonlinear optimal, estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure,” J. Geophys. Res. Atmos. 105, 17513–17526 (2000). [CrossRef]
  29. W. Li, K. Stamnes, R. Spurr, and J. Stamnes, “Simultaneous retrieval of aerosol and ocean properties by optimal estimation: SeaWiFS case studies for the Santa Barbara Channel,” Int. J. Remote Sens. 29, 5689–5698 (2008). [CrossRef]
  30. P. D. Watts, R. Bennartz, and F. Fell, “Retrieval of two-layer cloud properties from multispectral observations using optimal estimation,” J. Geophys. Res. Atmos. 116, D16203 (2011). [CrossRef]
  31. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited