OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5144–5148

Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm

Hossein Alisafaee and Majid Ghanaatshoar  »View Author Affiliations

Applied Optics, Vol. 51, Issue 21, pp. 5144-5148 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article, we introduce a simple magnetophotonic crystal structure for magnetic field sensing applications. Design procedure, which is performed using a global optimization tool called genetic algorithm, provides great flexibility for structures with layers having nonquarter-wavelength thickness. Results show that our proposed genetic sensor comparatively exhibits higher simplicity, sensitivity, and spatial resolution, with better photo-response and performance. We also analyze the underlying physical phenomenon responsible for such improvement by inspection of electric field distribution in the interior of the structure.

© 2012 Optical Society of America

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(230.4170) Optical devices : Multilayers
(310.4165) Thin films : Multilayer design
(230.5298) Optical devices : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Devices

Original Manuscript: March 16, 2012
Revised Manuscript: May 27, 2012
Manuscript Accepted: May 30, 2012
Published: July 13, 2012

Hossein Alisafaee and Majid Ghanaatshoar, "Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm," Appl. Opt. 51, 5144-5148 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. K. Dissanayake, M. Levy, A. A. Jalali, and V. J. Fratello, “Gyrotropic band gap optical sensors,” Appl. Phys. Lett. 96, 181105 (2010). [CrossRef]
  2. R. Fujikawa, K. Tanizaki, A. V. Baryshev, P. B. Lim, K. H. Shin, H. Uchida, and M. Inoue, “Magnetic field sensors using magnetophotonic crystals,” Proc. SPIE 6369, 63690G (2006). [CrossRef]
  3. M. Vasiliev, V. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn. 44, 323–328 (2008). [CrossRef]
  4. S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B 71, 205110 (2005). [CrossRef]
  5. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151 (2006). [CrossRef]
  6. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008). [CrossRef]
  7. M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci.: Mater. Electron. 20, 43–47 (2009). [CrossRef]
  8. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolators with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B 28, 2637–2642 (2011). [CrossRef]
  9. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt. 59, 126–130 (2012). [CrossRef]
  10. M. Klank, O. Hagedorn, M. Shamonin, and H. Dotsch, “Sensitive magneto-optical sensors for visualization of magnetic fields using garnet films of specific orientations,” J. Appl. Phys. 92, 6484 (2002). [CrossRef]
  11. M. Moradi, H. Alisafaee, and M. Ghanaatshoar, “The Kerr effect enhancement in non-quarter-wave lossy magnetophotonic crystals,” Physica B 405, 4488–4491 (2010). [CrossRef]
  12. M. Ghanaatshoar and H. Alisafaee, “Genetic optimization of magneto-optic Kerr effect in lossy cavity-type magnetophotonic crystals,” J. Magn. Magn. Mater. 323, 1823–1826 (2011). [CrossRef]
  13. J. F. Wu, Y. Y. Chen, and T. S. Wang, “Flat field concave holographic grating with broad spectral region and moderately high resolution,” Appl. Opt. 51, 509–514 (2012). [CrossRef]
  14. W. Paszkowicz, “Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields,” Mat. Manuf. Proc. 24, 174–197 (2009). [CrossRef]
  15. J. Goh, I. Fushman, D. Englund, and J. Vukovi, “Genetic optimization of photonic bandgap structures,” Opt. Express 15, 8218–8230 (2007). [CrossRef]
  16. L. Shen, Z. Ye, and S. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68, 035109 (2003). [CrossRef]
  17. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, “Photonic crystal fiber design by means of a genetic algorithm,” Opt. Express 12, 1990–1995 (2004). [CrossRef]
  18. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000). [CrossRef]
  19. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (CRC Press, Taylor and Francis, 2006).
  20. M. Moradi and M. Ghanaatshoar, “Cavity enhancement of the magneto-optic Kerr effect in glass/Al/SnO2/PtMnSb/SnO2 structure,” Opt. Commun. 283, 5053–5057 (2010). [CrossRef]
  21. M. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photon. Technol. Lett. 9, 955–957 (1997). [CrossRef]
  22. T. Baeck, Evolutionary Algorithms in Theory and Practice(Oxford University, 1996).
  23. T. D. Gwiazda, Genetic Algorithms Reference (Tomasz Gwiazda, 2006).
  24. R. Kumar, “System and method for the use of an adaptive mutation operator in genetic algorithms,” U. S. patent 7,660,773 (2September2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited