OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5168–5177

Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory

Akifumi Ogiwara and Minoru Watanabe  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5168-5177 (2012)
http://dx.doi.org/10.1364/AO.51.005168


View Full Text Article

Enhanced HTML    Acrobat PDF (3859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic polymer dispersed liquid crystal (HPDLC) memory is fabricated by a photoinduced phase separation comprised of polymer and liquid crystal (LC) phases using laser light interference exposures. The anisotropic diffraction induced by the alignment of LC in the periodic structure of the HPDLC memory is applied to reconstruct the configuration contexts for the optically reconfigurable gate arrays. Optical reconfiguration for various circuits under parallel programmability is implemented by switching the polarization state of incident light on the HPDLC memory using a spatial light modulator.

© 2012 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: May 1, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 6, 2012
Published: July 16, 2012

Citation
Akifumi Ogiwara and Minoru Watanabe, "Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory," Appl. Opt. 51, 5168-5177 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  2. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997). [CrossRef]
  3. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000). [CrossRef]
  4. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000). [CrossRef]
  5. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000). [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001). [CrossRef]
  7. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002). [CrossRef]
  8. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002). [CrossRef]
  9. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002). [CrossRef]
  10. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002). [CrossRef]
  11. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004). [CrossRef]
  12. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004). [CrossRef]
  13. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007). [CrossRef]
  14. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008). [CrossRef]
  15. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008). [CrossRef]
  16. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010). [CrossRef]
  17. A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011). [CrossRef]
  18. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999). [CrossRef]
  19. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE 74, 265–288 (1999).
  20. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000). [CrossRef]
  21. M. Watanabe and F. Kobayashi, “Dynamic Optically Reconfigurable Gate Array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006). [CrossRef]
  22. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008). [CrossRef]
  23. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008). [CrossRef]
  24. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009). [CrossRef]
  25. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010). [CrossRef]
  26. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited