OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5186–5200

Instrumental error in chromotomosynthetic hyperspectral imaging

Randall L. Bostick and Glen P. Perram  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5186-5200 (2012)
http://dx.doi.org/10.1364/AO.51.005186


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chromotomosynthetic imaging (CTI) is a method of convolving spatial and spectral information that can be reconstructed into a hyperspectral image cube using the same transforms employed in medical tomosynthesis. A direct vision prism instrument operating in the visible (400–725 nm) with 0.6 mrad instantaneous field of view (IFOV) and 0.6–10 nm spectral resolution has been constructed and characterized. Reconstruction of hyperspectral data cubes requires an estimation of the instrument component properties that define the forward transform. We analyze the systematic instrumental error in collected projection data resulting from prism spectral dispersion, prism alignment, detector array position, and prism rotation angle. The shifting and broadening of both the spectral lineshape function and the spatial point spread function in the reconstructed hyperspectral imagery is compared with experimental results for monochromatic point sources. The shorter wavelength (λ<500nm) region where the prism has the highest spectral dispersion suffers mostly from degradation of spectral resolution in the presence of systematic error, while longer wavelengths (λ>600nm) suffer mostly from a shift of the spectral peaks. The quality of the reconstructed hyperspectral imagery is most sensitive to the misalignment of the prism rotation mount. With less than 1° total angular error in the two axes of freedom, spectral resolution was degraded by as much as a factor of 2 in the blue spectral region. For larger errors than this, spectral peaks begin to split into bimodal distributions, and spatial point response functions are reconstructed in rings with radii proportional to wavelength and spatial resolution.

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: February 22, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 21, 2012
Published: July 16, 2012

Citation
Randall L. Bostick and Glen P. Perram, "Instrumental error in chromotomosynthetic hyperspectral imaging," Appl. Opt. 51, 5186-5200 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Crow and C. F. Coker, “High-fidelity modeling of infrared emissions form missile and aircraft exhaust plumes,” Proc. SPIE 2741, 242–250 (1996). [CrossRef]
  2. J. A. Orson, W. F. Bagby, and G. P. Perram, “Infrared signatures from bomb detonations,” Infrared Phys. Technol. 44, 101–107 (2003). [CrossRef]
  3. F. S. Simmons, Rocket Exhaust Plume Phenomenology(Aerospace, 2000).
  4. J. M. Mooney, “Angularly multiplexed spectral imager,” Proc. SPIE 2480, 65–77 (1995). [CrossRef]
  5. J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, F. D. Sheperd, and A. Brodzik, “A compact visible/near infrared hyperspectral imager,” Proc. SPIE 4208, 457–468 (2000). [CrossRef]
  6. J. M. Mooney and W. S. Ewing, “Characterization of a hyperspectral imager,” Proceedings of the 21st Information Systems Research Seminar in Scandinavia (CD-ROM) (Aalborg University, 1998).
  7. F. Shepherd, J. M. Mooney, T. E. Reeves, and P. Dumont, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008). [CrossRef]
  8. P. Scheirich, “An engineering trade space analysis for a space-based hyperspectral chromotomographic scanner,” Master’s thesis (Air Force Institute of Technology, 2009).
  9. T. A. Book, “Design analysis of a space based chromotomographic hyperspectral imaging experiment,” Master’s thesis (Air Force Institute of Technology, 2010).
  10. D. C. O’Dell, R. L. Bostick, M. R. Hawks, E. D. Swenson, J. T. Black, R. G. Cobb, and G. P. Perram, “Chromotomographic imager field demonstration results,” Proc. SPIE 7668, 766804 (2010). [CrossRef]
  11. D. O’Dell, “Development and demonstration of a field-deployable fast chromotomographic imager,” Master’s thesis (Air Force Institute of Technology, 2010).
  12. Y. Chen, J. Y. Lo, and J. T. Dobbins, “Impulse response for several digital tomosynthesis mammography reconstruction algorithms,” Proc. SPIE 5745, 541–549 (2005). [CrossRef]
  13. R. L. Bostick and G. P. Perram, “Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system,” Rev. Sci. Instrum. 83, 033110 (2012). [CrossRef]
  14. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology 205, 399–406 (1997).
  15. D. Van de Sompel and M. Brady, “A systematic performance analysis of the simultaneous algebraic reconstruction technique (SART) for limited angle tomography,” in Proceedings of the 30th Annual International Conference of the IEEE In Engineering in Medicine and Biology Society (IEEE, 2008), pp. 2729–2732.
  16. U. E. Ruttiman, R. A. J. Groehnuis, and R. L. Webber, “Restoration of digital multiplane tomosynthesis by a constrained iteration method,” IEEE Trans. Med. Imaging 3, 141–148 (1984). [CrossRef]
  17. K. C. Gustke, “Reconstruction algorithm characterization and performance monitoring in limited-angle chromotomography,” Master’s thesis (Air Force Institute of Technology, 2004).
  18. M. Gould and S. Cain, “Development of a fast chromotomographic spectrometer,” Opt. Eng. 44, 110503 (2005). [CrossRef]
  19. H. Matsuo, A. Iwata, I. Horiba, and N. Suzumura, “Three-dimensional image reconstruction by digital tomo-synthesis using inverse filtering,” Trans. Med. Imaging 12, 307–313 (1993). [CrossRef]
  20. A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. 16, 246–258 (1999). [CrossRef]
  21. M. An, A. K. Brodzik, J. M. Mooney, and R. Tolimieri, “Data restoration in chromotomographic hyperspectral imaging,” Proc. SPIE 4123, 150–161 (2000). [CrossRef]
  22. J. M. Mooney, A. K. Brodzik, and M. An, “Principal component analysis in limited-angle chromotomography,” Proc. SPIE 3118, 170–178 (1997). [CrossRef]
  23. K. C. Tam and V. Perez-Mendez, “Tomographic imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981). [CrossRef]
  24. N Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. spatial and spectral resolution,” Appl. Opt. 47, F85–F95 (2008). [CrossRef]
  25. G. Stevens, R. Fahrig, and N. Pelc, “Filtered backprojection for modifying the impulse response of circular tomosynthesis,” Med. Phys. 28, 372–380 (2001). [CrossRef]
  26. G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc, “Circular tomosynthesis: potential in imaging of breast and upper cervical spine—preliminary phantom and in vitro study,” Radiology 228, 569–575(2003). [CrossRef]
  27. T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis,” Med. Phys. 31, 2636–2647 (2004). [CrossRef]
  28. R. J. Warp, D. G. Godfrey, and J. T. Dobbins, “Applications of matrix inverse tomosynthesis,” Proc. SPIE 3977, 376–383 (2000). [CrossRef]
  29. R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Phys. Med. Biol. 21, 689–732 (1976). [CrossRef]
  30. J. T. Dobbins and D. J. Godfrey, “Digital x-ray tomosynthesis: current state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited