OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5186–5200

Instrumental error in chromotomosynthetic hyperspectral imaging

Randall L. Bostick and Glen P. Perram  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5186-5200 (2012)
http://dx.doi.org/10.1364/AO.51.005186


View Full Text Article

Enhanced HTML    Acrobat PDF (1064 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chromotomosynthetic imaging (CTI) is a method of convolving spatial and spectral information that can be reconstructed into a hyperspectral image cube using the same transforms employed in medical tomosynthesis. A direct vision prism instrument operating in the visible (400–725 nm) with 0.6 mrad instantaneous field of view (IFOV) and 0.6–10 nm spectral resolution has been constructed and characterized. Reconstruction of hyperspectral data cubes requires an estimation of the instrument component properties that define the forward transform. We analyze the systematic instrumental error in collected projection data resulting from prism spectral dispersion, prism alignment, detector array position, and prism rotation angle. The shifting and broadening of both the spectral lineshape function and the spatial point spread function in the reconstructed hyperspectral imagery is compared with experimental results for monochromatic point sources. The shorter wavelength (λ<500nm) region where the prism has the highest spectral dispersion suffers mostly from degradation of spectral resolution in the presence of systematic error, while longer wavelengths (λ>600nm) suffer mostly from a shift of the spectral peaks. The quality of the reconstructed hyperspectral imagery is most sensitive to the misalignment of the prism rotation mount. With less than 1° total angular error in the two axes of freedom, spectral resolution was degraded by as much as a factor of 2 in the blue spectral region. For larger errors than this, spectral peaks begin to split into bimodal distributions, and spatial point response functions are reconstructed in rings with radii proportional to wavelength and spatial resolution.

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: February 22, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 21, 2012
Published: July 16, 2012

Citation
Randall L. Bostick and Glen P. Perram, "Instrumental error in chromotomosynthetic hyperspectral imaging," Appl. Opt. 51, 5186-5200 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5186

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited