OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5302–5309

Fully tunable active polarization imager for contrast enhancement and partial polarimetry

Guillaume Anna, Hervé Sauer, François Goudail, and Daniel Dolfi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5302-5309 (2012)
http://dx.doi.org/10.1364/AO.51.005302


View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and the practical implementation of a polarimetric imaging system based on liquid-crystal modulators that allows generation and analysis of any polarization state on the Poincaré sphere. This system is more versatile than standard Mueller imagers that are based on optimized, but limited, sets of illumination and analysis states. Examples of benefits brought by these extra degrees of freedom are illustrated on two different applications: contrast enhancement and extraction of partial polarimetric properties of a scene.

© 2012 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 28, 2012
Revised Manuscript: May 29, 2012
Manuscript Accepted: June 3, 2012
Published: July 20, 2012

Citation
Guillaume Anna, Hervé Sauer, François Goudail, and Daniel Dolfi, "Fully tunable active polarization imager for contrast enhancement and partial polarimetry," Appl. Opt. 51, 5302-5309 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996). [CrossRef]
  2. J. E. Solomon, “Polarization imaging,” Appl. Opt. 20, 1537–1544 (1981). [CrossRef]
  3. R. Walraven, “Polarization imagery,” Opt. Eng. 20, 14–18 (1981).
  4. A. D. Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef]
  5. P. Lemaillet, S. Rivet, and B. L. Jeune, “Optimization of a snapshot Mueller matrix polarimeter,” Opt. Lett. 33, 144–146 (2008). [CrossRef]
  6. P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm,” Opt. Express 18, 23095–23103 (2010). [CrossRef]
  7. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002). [CrossRef]
  8. J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations for imaging polarimeters: impact of image noise and systematic errors.” J. Opt. A 8, 807–814 (2006). [CrossRef]
  9. F. Goudail, “Noise minimization and equalization for Stokes polarimeters in the presence of signal-dependent Poisson shot noise,” Opt. Lett. 34, 647–649 (2009). [CrossRef]
  10. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  11. G. W. Kattawar and M. J. Rakovic, “Virtues of Mueller matrix imaging for underwater target detection,” Appl. Opt. 38, 6431–6438 (1999). [CrossRef]
  12. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008). [CrossRef]
  13. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010). [CrossRef]
  14. D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective and polarimetric characteristics of urban materials,” Proc. SPIE 6240, 62400A (2006). [CrossRef]
  15. B. G. Hoover and J. S. Tyo, “Polarization components analysis for invariant discrimination,” Appl. Opt. 46, 8364–8373 (2007). [CrossRef]
  16. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detection in the presence of spatially fluctuating Mueller matrices,” Opt. Lett. 36, 4590–4592 (2011). [CrossRef]
  17. G. Anna, F. Goudail, and D. Dolfi, “Optimal discrimination of multiple regions with an active polarimetric imager,” Opt. Express 19, 25367–25378 (2011). [CrossRef]
  18. J. S. Tyo, S. J. Johnson, Z. Wang, and B. G. Hoover, “Designing partial Mueller matrix polarimeters,” Proc. SPIE 746174610V (2009). [CrossRef]
  19. S. Savenkov, R. Muttiah, E. Oberemok, and A. Klimov, “Incomplete active polarimetry: measurement of the block-diagonal scattering matrix,” J. Quant. Spectrosc. Radiat. Transfer 112, 1796–1802 (2011). [CrossRef]
  20. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). [CrossRef]
  21. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with a liquid crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282(2004). [CrossRef]
  22. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009). [CrossRef]
  23. J. Liu and R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553–1559 (1997). [CrossRef]
  24. K. M. Twietmeyer and R. A. Chipman, “Optimization of Mueller matrix polarimeters in the presence of error sources,” Opt. Express 16, 11589–11603 (2008). [CrossRef]
  25. M. Shribak, “Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution,” J. Opt. Soc. Am. A 28, 410–419 (2011). [CrossRef]
  26. A. B. Kostinski and W. M. Boerner, “On the polarimetric contrast optimization,” IEEE Trans. Antennas Propagat. 35, 988–991 (1987). [CrossRef]
  27. M. Richert, X. Orlik, and A. De Martino, “Adapted polarization state contrast image,” Opt. Express 17, 14199–14210 (2009). [CrossRef]
  28. F. Goudail and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34, 1471–1473 (2009). [CrossRef]
  29. F. Goudail, “Comparison of the maximal achievable contrast in scalar, Stokes and Mueller images,” Opt. Lett. 35, 2600–2602 (2010). [CrossRef]
  30. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt. 49, 2326–2333 (2010). [CrossRef]
  31. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled complex evolution approach for effective and efficient global minimization,” J. Optim. Theory Appl. 76, 501–521 (1993). [CrossRef]
  32. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995). [CrossRef]
  33. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  34. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 1984).
  35. F. Goudail and A. Bénière, “Estimation precision of the degree of linear polarization and of the angle of polarization in the presence of different sources of noise,” Appl. Opt. 49, 683–693 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited