OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 21 — Jul. 20, 2012
  • pp: 5318–5325

Self-mixing vibrometer with real-time digital signal elaboration

Alessandro Magnani, Alessandro Pesatori, and Michele Norgia  »View Author Affiliations


Applied Optics, Vol. 51, Issue 21, pp. 5318-5325 (2012)
http://dx.doi.org/10.1364/AO.51.005318


View Full Text Article

Enhanced HTML    Acrobat PDF (871 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work describes the development of an optical sensor for measurement of vibration without contact. The realized vibrometer is based on real-time digital elaboration of the signal obtained by a self-mixing interferometer, with an embedded autofocus system. Two different algorithms are implemented, for the continuous working on diffusive surfaces, with different levels of optical reflectivity. Thanks to the autofocus and the digital processing, the proposed sensor is easy to use and requires no assistance of a skilled operator.

© 2012 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 3, 2012
Manuscript Accepted: June 28, 2012
Published: July 20, 2012

Citation
Alessandro Magnani, Alessandro Pesatori, and Michele Norgia, "Self-mixing vibrometer with real-time digital signal elaboration," Appl. Opt. 51, 5318-5325 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-21-5318


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A Pure Appl. Opt. 4, 283–294 (2002). [CrossRef]
  2. S. Donati, Electro-Optical Instrumentation—Sensing and Measuring with Lasers (Prentice Hall, 2004).
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, 1991).
  4. G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14, 24–32 (2003). [CrossRef]
  5. M. Norgia and C. Svelto, “Novel measurement method for signal recovery in optical vibrometer,” IEEE Trans. Instrum. Meas. 57, 1703–1707 (2008). [CrossRef]
  6. S. Donati, M. Norgia, and G. Giuliani, “Self-mixing differential vibrometer based on electronic channel subtraction,” Appl. Opt. 45, 7264–7268 (2006). [CrossRef]
  7. M. Norgia, A. Pesatori, M. Tanelli, and M. Lovera, “Frequency compensation for a self-mixing interferometer,” IEEE Trans. Instrum. Meas. 59, 1368–1374 (2010). [CrossRef]
  8. P. A. Roos, M. Stephens, and C. E. Wieman, “Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode,” Appl. Opt. 35, 6754–6761 (1996). [CrossRef]
  9. U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35, 1278–1280 (2010). [CrossRef]
  10. M. Norgia, A. Pesatori, and L. Rovati, “Low-cost optical flowmeter with analog front-end electronics for blood extracorporeal circulators,” IEEE Trans. Instrum. Meas. 59, 1233–1239 (2010). [CrossRef]
  11. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows,” Appl. Opt. 33, 5628–5641 (1994). [CrossRef]
  12. M. Norgia, A. Pesatori, and L. Rovati, “Self-mixing laser Doppler spectra of extracorporeal blood flow: A theoretical and experimental study,” IEEE Sens. J. 12, 552–557 (2012). [CrossRef]
  13. S. K. Özdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, “Self-mixing laser speckle velocimeter for blood flow measurement,” IEEE Trans. Instrum. Meas. 49, 1029–1035 (2000). [CrossRef]
  14. M. Norgia, S. Donati, and D. D’Alessandro, “Interferometric measurements of displacement on diffusing target by a speckle tracking technique,” IEEE J. Quantum Electron. 37, 800–806 (2001). [CrossRef]
  15. Y. Fan, Y. Yu, J. Xi, and J. F. Chicharo, “Improving the measurement performance for a self-mixing interferometry-based displacement sensing system,” Appl. Opt. 50, 5064–5072 (2011). [CrossRef]
  16. C. Bes, G. Plantier, and T. Bosch, “Displacement measurements using a self-mixing laser diode under moderate feedback,” IEEE Trans. Instrum. Meas. 55, 1101–1105 (2006). [CrossRef]
  17. M. Norgia and S. Donati, “A displacement-measuring instrument utilizing self-mixing interferometry,” IEEE Trans. Instrum. Meas. 52, 1765–1770 (2003). [CrossRef]
  18. M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001). [CrossRef]
  19. M. Norgia, G. Giuliani, and S. Donati, “Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop,” IEEE Trans. Instrum. Meas. 56, 1894–1900 (2007). [CrossRef]
  20. M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012). [CrossRef]
  21. M. Norgia, A. Pesatori, and C. Svelto, “Novel interferometric method for the measurement of laser wavelength/frequency-modulation sensitivity,” IEEE Trans. Instrum. Meas. 56, 1373–1376 (2007). [CrossRef]
  22. G. Giuliani and M. Norgia, “Laser diode linewidth measurement by means of self-mixing interferometry,” IEEE Photon. Technol. Lett. 12, 1028–1030 (2000). [CrossRef]
  23. I. Milesi, M. Norgia, P. P. Pompilio, C. Svelto, and R. Dellacà, “Measurement of local chest wall displacement by a custom self-mixing laser interferometer,” IEEE Trans. Instrum. Meas. 60, 2894–2901 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited