OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5392–5400

Characterization of a visible spectrum division-of-focal-plane polarimeter

Timothy York and Viktor Gruev  »View Author Affiliations

Applied Optics, Vol. 51, Issue 22, pp. 5392-5400 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The development of high resolution division-of-focal-plane polarimeters in the visible spectrum allows real-time capture of two chief properties of interest, the degree of linear polarization and the angle of polarization. The accuracy of these two parameters can be influenced by a number of factors in the imaged scene, from the incident intensity and wavelength to the lens used for image capture. The alignment, transmission, and contrast ratios of the pixel matched filters also impact the measured parameters. A system of measurements is presented here that shows how these factors can determine the quality of a division-of-focal-plane polarimeter.

© 2012 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Physical Optics

Original Manuscript: May 10, 2012
Manuscript Accepted: May 27, 2012
Published: July 25, 2012

Timothy York and Viktor Gruev, "Characterization of a visible spectrum division-of-focal-plane polarimeter," Appl. Opt. 51, 5392-5400 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009). [CrossRef]
  2. M. Anastasiadou, A. D. Martino, D. Clement, F. Liége, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Stat. Sol. C 5, 1423–1426 (2008). [CrossRef]
  3. T. Krishna, C. Creusere, and D. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process. 20, 288–292 (2011). [CrossRef]
  4. H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comp. Vis. 28, 73–83 (1998). [CrossRef]
  5. M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J. 11, 1692–1703 (2011). [CrossRef]
  6. S.-S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137–2153 (2006). [CrossRef]
  7. S. Shwartz, E. Namer, and Y. Schechner, “Blind haze separation,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2 (IEEE, 2006), pp. 1984–1991.
  8. D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, Vol. 2 (IEEE, 2003), pp. 982–987.
  9. C. P. Huynh, A. Robles-Kelly, and E. Hancock, “Shape and refractive index recovery from single-view polarisation images,” in Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 1229–1236.
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  11. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2010).
  12. J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J. P. Pezzaniti, and H. Schultz, “Four camera complete stokes imaging polarimeter,” Proc. SPIE 6972, 69720J(2008). [CrossRef]
  13. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005). [CrossRef]
  14. P. Bhandari, K. J. Voss, and L. Logan, “An instrument to measure the downwelling polarized radiance distribution in the ocean,” Opt. Express 19, 17609–17620 (2011). [CrossRef]
  15. B. E. Bayer, “Color imaging array,” U.S. patent 3,971,065 (20July1976).
  16. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010). [CrossRef]
  17. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009). [CrossRef]
  18. X. Zhao, F. Boussaid, A. Bermak, and V. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009). [CrossRef]
  19. S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65 nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011). [CrossRef]
  20. D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng. 51, 014001 (2012). [CrossRef]
  21. J. S. Tyo, C. F. LaCasse, and B. M. Ratliff, “Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters,” Opt. Lett. 34, 3187–3189 (2009). [CrossRef]
  22. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009). [CrossRef]
  23. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011). [CrossRef]
  24. S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2012), paper 1832.
  25. J. Nakamura, ed., Image Sensors and Signal Processing for Digital Still Cameras (CRC, 2006).
  26. T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE 8012, 80120H (2011). [CrossRef]
  27. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008). [CrossRef]
  28. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited