OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5401–5411

Narrowband sodium lidar for the measurements of mesopause region temperature and wind

Tao Li, Xin Fang, Wei Liu, Sheng-Yang Gu, and Xiankang Dou  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5401-5411 (2012)
http://dx.doi.org/10.1364/AO.51.005401


View Full Text Article

Enhanced HTML    Acrobat PDF (1415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report here a narrowband high-spectral resolution sodium temperature/wind lidar recently developed at the University of Science and Technology of China (USTC) in Hefei, China (31.5 °N, 117 °E). Patterned after the Colorado State University (CSU) narrowband sodium lidar with a dye laser-based transmitter, the USTC sodium temperature/wind lidar was deployed with a number of technical improvements that facilitate automation and ease of operation; these include a home constructed pulsed dye amplifier (PDA), a beam-steering system, a star-tracking program, and an electronic timing control. With the averaged power of 1.2W output from PDA and the receiving telescope diameter of 0.76 m, our lidar system has a power aperture product of 0.55Wm2 and is comparable to the CSU and the University of Illinois at Urbana-Champaign (UIUC) sodium lidar systems. The uncertainties of typical measurements induced by photon noise and laser locking fluctuation for the temperature and wind with a 2 km vertical and 15 min temporal resolutions under the nighttime clear sky condition are estimated to be 1.0K and 1.5m/s, respectively, at the sodium peak (e.g., 91 km), and 8 K and 10m/s, respectively, at both sodium layer edges (e.g., 81 km and 105 km). The USTC narrowband sodium lidar has been operated regularly during the night since November 2011. Using the initial data collected, we demonstrate the reliability and suitability of these high resolution and precision datasets for studying the wave perturbations in the mesopause region.

© 2012 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.1310) Scattering : Atmospheric scattering
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 6, 2012
Revised Manuscript: June 3, 2012
Manuscript Accepted: June 4, 2012
Published: July 25, 2012

Citation
Tao Li, Xin Fang, Wei Liu, Sheng-Yang Gu, and Xiankang Dou, "Narrowband sodium lidar for the measurements of mesopause region temperature and wind," Appl. Opt. 51, 5401-5411 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Lindzen, “Turbulence and stress owing to gravity wave and tidal breakdown,” J. Geophys. Res. 86, 9707–9714 (1981). [CrossRef]
  2. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (2003). [CrossRef]
  3. J. M. Forbes, “Tidal and planetary waves,” in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophy. Monog. Ser. 87, 67–87 (1995).
  4. G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlynczak, J. Scheer, V. I. Fomichev, D. Offermann, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lübken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes, and S. Fadnavis, “Review of mesospheric temperature trends,” Rev. Geophys. 41, 1015 (2003). [CrossRef]
  5. G. Beig, “Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response,” J. Geophys. Res. 116, A00H12 (2011). [CrossRef]
  6. C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence lidar for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992). [CrossRef]
  7. X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.
  8. C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, and D. A. Krueger, “Tidal perturbations and variability in mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004). [CrossRef]
  9. M. R. Bowman, A. J. Gibson, and M. C. W. Sandford, “Atmospheric sodium measured by a tuned laser radar,” Nature 221, 456–457 (1969). [CrossRef]
  10. M. C. W. Sandford and A. J. Gibson, “Laser radar measurements of the atmospheric sodium layer,” J. Atmos. Terr. Phys. 32, 1423–1430 (1970). [CrossRef]
  11. R. D. Hake, D. E. Arnold, D. W. Jackson, W. E. Evans, B. P. Ficklin, and R. A. Long, “Dye-laser observations of the nighttime atomic sodium layer,” J. Geophys. Res. 77, 6839–6848 (1972). [CrossRef]
  12. V. W. J. H. Kirchhoff and B. R. Clemesha, “Atmospheric sodium measurements at 238 S,” J. Atmos. Terr. Phys. 35, 1493–1498 (1973). [CrossRef]
  13. A. J. Gibson, L. Thomas, and S. K. Bhattachacharyya, “Laser observations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature 281, 131–132 (1979). [CrossRef]
  14. K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  15. R. Neuber, P. Von der Gathen, and U. Von Zahn, “Altitude and temperature of the mesopause at 69 °N latitude in winter,” J. Geophys. Res. 93, 11093–11101 (1988). [CrossRef]
  16. U. von Zahn and W. Meyer, “Mesopause temperatures in polar summer,” J. Geophys. Res. 94, 14647–14651 (1989). [CrossRef]
  17. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, and C. S. Gardner, “Two-frequency lidar technique for nesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990). [CrossRef]
  18. R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991). [CrossRef]
  19. C.-Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994). [CrossRef]
  20. R. E. Bills, C. S. Gardner, and S. J. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana medium frequency radar,” J. Geophys. Res. 96, 22701–22707 (1991). [CrossRef]
  21. C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998). [CrossRef]
  22. A. Z. Liu and C. S. Gardner, “Vertical heat and constituent transport in the mesopause region by dissipating gravity waves at Maui, Hawaii (20.7 °N), and Starfire Optical Range, New Mexico (35 °N),” J. Geophys. Res. 110, D09S13 (2005). [CrossRef]
  23. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553–3561 (2011). [CrossRef]
  24. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C.-Y. She, D. A. Krueger, and M. Tsutsumi, “Wintertime mesopause temperatures observed by lidar measurements over Syowa station (69 °S, 39 °E), Antarctica,” Geophys. Res. Lett. 29, 1709 (2002). [CrossRef]
  25. J. D. Vance, C. Y. She, and H. Moosmuller, “Continuous-wave, all solid- tate, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998). [CrossRef]
  26. C. Y. She, Joe D. Vance, B. P. Williams, D. A. Krueger, H. Moosuller, D. Gibson-Wilde, and D. C. Fritts, “Lidar studies of atmospheric dynamics near polar mesopause,” EOS Transactions, American Geophysical Union 83, 289–293 (2002). [CrossRef]
  27. U. von Zahn and J. Höffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996). [CrossRef]
  28. J. S. Friedman, C. A. Tepley, S. Raizada, Q. H. Zhou, J. Hedin, and R. Delgado, “Potassium Doppler-resonance lidar for the study of the mesosphere and lower thermosphere at the Arecibo Observatory,” J. Atoms. Sol.-Terr. Phys. 65, 1411–1424 (2003). [CrossRef]
  29. J. Höffner and J. Lautenbach, “Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar,” Opt. Lett. 34, 1351–1353 (2009). [CrossRef]
  30. K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35–49 (2003). [CrossRef]
  31. J. A. Smith, X. Chu, W. Huang, and B. Tan, “Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidar,” Opt. Eng. 48, 104301 (2009). [CrossRef]
  32. T. Yuan, J. Yue, C.-Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Krueger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009). [CrossRef]
  33. I. S. McDermid, T. D. Walsh, A. Deslis, and M. While, “Optical systems design for a stratospheric lidar system,” Appl. Opt. 34, 6201–6210 (1995). [CrossRef]
  34. B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005). [CrossRef]
  35. C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric application,” Appl. Opt. 34, 1063–1075 (1995). [CrossRef]
  36. P. E. Acott, C.-Y. She, D. A. Krueger, Z.-A. Yan, T. Yuan, J. Yue, and S. Harrell, “Observed nocturnal gravity wave variances and zonal momentum flux in mid-latitude mesopause region over Fort Collins, Colorado, USA,” J. Atmos. Sol. Terr. Phys. 73, 449–456 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited