OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5419–5424

Curved focal plane detector array for wide field cameras

Delphine Dumas, Manuel Fendler, Nicolas Baier, Jérôme Primot, and Etienne le Coarer  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5419-5424 (2012)
http://dx.doi.org/10.1364/AO.51.005419


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Miniaturization is the main goal for system design in future cameras. This paper offers a novel method to scale down the optical system and to improve the image quality. As with the human retina, the detector array is spherically bent to fit the curved image surface; so the field curvature aberration is directly suppressed, leading to a better resolution and a simplified optical design. By thinning the substrate, the device is monolithically curved without modifying the fabrication process of the active pixels. Optical characterizations have been performed on planar and curved focal plane based cameras to illustrate the optical advantages of detector array curvature.

© 2012 Optical Society of America

OCIS Codes
(040.1490) Detectors : Cameras
(080.1010) Geometric optics : Aberrations (global)
(110.3080) Imaging systems : Infrared imaging
(220.1000) Optical design and fabrication : Aberration compensation
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Detectors

History
Original Manuscript: April 9, 2012
Manuscript Accepted: May 19, 2012
Published: July 26, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Delphine Dumas, Manuel Fendler, Nicolas Baier, Jérôme Primot, and Etienne le Coarer, "Curved focal plane detector array for wide field cameras," Appl. Opt. 51, 5419-5424 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Braüer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010). [CrossRef]
  2. G. Druart, N. Guérineau, J. Taboury, S. Rommeluère, R. Haïdar, J. Primot, M. Fendler, and J.-C. Cigna, “Compact infrared pinhole fisheye for wide field applications,” Appl. Opt. 48, 1104–1113 (2009). [CrossRef]
  3. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009). [CrossRef]
  4. F. de la Barriere, G. Druart, N. Guerineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011). [CrossRef]
  5. O. Iwert and B. Delabre, “The challenge of highly curved monolithic imaging detectors,” Proc. SPIE 7742, 774227 (2010). [CrossRef]
  6. S. B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965–4971 (2008). [CrossRef]
  7. D. Dumas, M. Fendler, F. Berger, B. Cloix, C. Pornin, N. Baier, G. Druart, J. Primot, and E. le Coarer, “An infrared camera based on curved retina,” Opt. Lett. 37, 653–655 (2012). [CrossRef]
  8. S. Snow and S. C. Jacobsen, “Microfabrication processes on cylindrical substrates—Part II: Lithography and connections,” Microelectron. Eng. 84, 11–20 (2007). [CrossRef]
  9. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint—soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306–2310 (2009). [CrossRef]
  10. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454, 748–753 (2008). [CrossRef]
  11. R. Dinyari, S.-B. Rim, K. Huang, P. B. Catrysse, and P. Peumans, “Curving monolithic silicon for nonplanar focal plane array applications,” Appl. Phys. Lett. 92, 091114 (2008). [CrossRef]
  12. S. Johansson, F. Ericson, and J.-Å. Schweitz, “Influence of the surface coating on elasticity, residual stresses, and fracture properties of silicon microelements,” J. Appl. Phys. 65, 122–128 (1989). [CrossRef]
  13. K. Iizuka, Engineering Optics (Springer-Verlag, 1987).
  14. R. Tummala, System on Package: Miniaturization of the Entire System, 1st ed. (McGraw-Hill Professional, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited