OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5438–5441

Raman spectral analysis of TiO2 thin films doped with rare-earth samarium

Chang-Hu Yang and Zhong-Quan Ma  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5438-5441 (2012)
http://dx.doi.org/10.1364/AO.51.005438


View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

TiO2 thin films doped with rare-earth samarium were prepared on a quartz plate by the sol-gel/spin-coating technique. The samples were annealed at 700 °C to 1100 °C, and the Raman spectra of the samples were obtained. Analyses of Raman spectra show that samarium doping can inhibit the anatase–rutile phase transition. Samarium doping can refine grains of TiO2 thin films and increase the internal stress, thereby preventing lattice vibration. Nanocrystalline TiO2 thin films obviously show the phonon confinement effect, i.e., the blueshift of characteristic Raman peak and full width at half-height increase, and the peak shapes asymmetrically broaden with a decrease in the grain sizes of the samples.

© 2012 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.6870) Thin films : Thin films, other properties

ToC Category:
Spectroscopy

History
Original Manuscript: July 19, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: July 5, 2012
Published: July 27, 2012

Citation
Chang-Hu Yang and Zhong-Quan Ma, "Raman spectral analysis of TiO2 thin films doped with rare-earth samarium," Appl. Opt. 51, 5438-5441 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991). [CrossRef]
  2. H. C. Chen, K. S. Lee, and C. C. Lee, “Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods,” Appl. Opt. 47, C284–C287 (2008). [CrossRef]
  3. Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B: Environ. 83, 24–29 (2008). [CrossRef]
  4. V. Kiisk, I. Sildos, S. Lange, V. Reedo, T. Tätte, M. Kirm, and J. Aarik, “Photoluminescence characterization of pure and Sm3+-doped thin metaloxide films,” Appl. Surf. Sci. 247, 412–417 (2005). [CrossRef]
  5. P. Du, A. Bueno-López, M. Verbaas, A. R. Almeida, M. Makkee, J. A. Moulijn, and G. Mul, “The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation,” J. Catal. 260, 75–80 (2008). [CrossRef]
  6. S. Mona and M. S. A. Abdel-Mottaleb, “Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: preparation, characterization and potential applications,” Inorg. Chim. Acta 360, 2863–2874 (2007). [CrossRef]
  7. C. H. Yang, Z. Q. Ma, F. Li, B. He, J. H. Yuan, and Z. H. Zhang, “Spectrum analysis on phase transformations in TiO2 thin films,” Acta Phys. Chim. Sin. 26, 1349–1354 (2010).
  8. V. Swamy, A. Kuznetsov, L. S. Dubrovinsky, R. A. Caruso, D. G. Shchukin, and B. C. Muddle, “Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2,” Phys. Rev. B 71, 184302 (2005). [CrossRef]
  9. C. R. Aita, “Raman scattering by thin film nanomosaic rutile TiO2,” Appl. Phys. Lett. 90, 213112 (2007). [CrossRef]
  10. J. Lin and J. C. Yu, “An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air,” J. Photochem. Photobiol., A 116, 63–67 (1998). [CrossRef]
  11. E. L. Crepaldi, G. J. D. A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, “Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2,” J. Am. Chem. Soc. 125, 9770–9786 (2003). [CrossRef]
  12. C. Pighini, D. Aymes, N. Millot, and L. Saviot, “Low-frequency Raman characterization of size-controlled anatase TiO2 nanopowders prepared by continuous hydrothermal syntheses,” J. Nanopart. Res. 9, 309–315 (2007). [CrossRef]
  13. H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vibr. Spectrosc. 37, 33–38 (2005). [CrossRef]
  14. A. Turković, M. Ivanda, S. Popović, A. Toncjc, M. Gotić, P. Dubček, and S. Musić, “Comparative Raman, XRD, HREM and SAXS studies of grain sizes in nanophase TiO2,” J. Mol. Struct. 410–411, 271–273 (1997). [CrossRef]
  15. M. Ivanda, S. Musić, M. Gotić, A. Turković, A. M. Tonejc, and O. Gamulin, “The effects of crystal size on the Raman spectra of nanophase TiO2,” J. Mol. Struct. 480-481, 641–644 (1999). [CrossRef]
  16. T. Tong, J. Zhang, B. Tian, and F. Chen, “Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity,” J. Colloid Interface Sci. 315, 382–388 (2007). [CrossRef]
  17. J. W. Shi, J. T. Zheng, and P. Wu, “Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles,” J. Hazardous Mater. 161, 416–422 (2009). [CrossRef]
  18. Z. Xu, Q. Yang, C. Xie, W. Yan, Y. Du, Z. Gao, and J. Zhang, “Structure, luminescence properties and photocatalytic activity of europium doped-TiO2 nanoparticles,” J. Mater. Sci. 40, 1539–1541 (2005). [CrossRef]
  19. S. Sharafat, A. Takahashi, K. Nagasawa, and N. Ghoniem, “A description of stress driven bubble growth of helium implanted tungsten,” J. Nucl. Mater. 389, 203–212 (2009). [CrossRef]
  20. H. Kagi and S. Fukura, “Infrared and Raman spectroscopic observations of Central African carbonado and implications for its origin,” Eur. J. Mineral. 20, 387–393 (2008). [CrossRef]
  21. Q. Li, W. Qiu, H. Tan, J. Guo, and Y. Kang, “Micro-Raman spectroscopy stress measurement method for porous silicon film,” Opt. Lasers Eng. 48, 1119–1125 (2010). [CrossRef]
  22. I. A. Alhomoudi and G. Newaz, “Residual stresses and Raman shift relation in anatase TiO2 thin film,” Thin Solid Films 517, 4372–4378 (2009). [CrossRef]
  23. S. Kelly, F. H. Pollak, and M. Tomkiewicz, “Raman Spectroscopy as a morphological probe for TiO2 aerogels,” J. Phys. Chem. B 101, 2730–2734 (1997). [CrossRef]
  24. D. Bersani, P. P. Lottici, and X. Z. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 72, 73–75 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited