OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5442–5452

Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers

Michael R. Hutsel and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5442-5452 (2012)
http://dx.doi.org/10.1364/AO.51.005442


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three-dimensional index-stress distribution (3DISD) measurement method for determining concurrently the refractive-index distributions (RIDs) and residual-stress distributions (RSDs) in optical fibers is presented. The method combines the quantitative-phase microscopy technique, the Brace–Köhler compensator technique, and computed tomography principles. These techniques are implemented on a common apparatus to enable concurrent characterization of the RID and the RSD. Measurements are performed on Corning SMF-28 fiber in an unperturbed section and in a section exposed to CO2 laser radiation. The concurrent measurements allow for the first accurate comparison of the collocated RID and RSD. The resolutions of the refractive index and stress are estimated to be 2.34×105 and 0.35 MPa, respectively.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(110.0180) Imaging systems : Microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: April 9, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 27, 2012
Published: July 27, 2012

Citation
Michael R. Hutsel and Thomas K. Gaylord, "Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers," Appl. Opt. 51, 5442-5452 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5442


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010). [CrossRef]
  2. P. R. Watekar, S. Ju, and W. T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17, 10350–10363 (2009). [CrossRef]
  3. L. Eldada, “Optical communication components,” Rev. Sci. Instrum. 75, 575–593 (2004). [CrossRef]
  4. J. A. Buck, Fundamentals of Optical Fibers (Wiley, 2004).
  5. A. C. O. Chan and M. Premaratne, “Dispersion-compensating fiber Raman amplifiers with step, parabolic, and triangular refractive index profiles,” J. Lightwave Technol. 25, 1190–1197 (2007). [CrossRef]
  6. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings,” Electron. Lett. 36, 1354–1355 (2000). [CrossRef]
  7. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, and E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001). [CrossRef]
  8. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and A. Z. Hu, “A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses,” IEEE Photon. Technol. Lett. 15, 251–253 (2003). [CrossRef]
  9. M. I. Braiwish, B. L. Bachim, and T. K. Gaylord, “Prototype CO2 laser-induced long-period fiber grating variable optical attenuators and optical tunable filters,” Appl. Opt. 43, 1789–1793 (2004). [CrossRef]
  10. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003). [CrossRef]
  11. Y. P. Wang, D. N. Wang, W. Jin, and Y. J. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007). [CrossRef]
  12. K. Brugger, “Effect of thermal stress on refractive index in clad fibers,” Appl. Opt. 10, 437–438 (1971). [CrossRef]
  13. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980). [CrossRef]
  14. Y. Hibino, F. Hanawa, and M. Horiguchi, “Drawing-induced residual stress effects on optical characteristics in pure-silica-core single-mode fibers,” J. Appl. Phys. 65, 30–34 (1989). [CrossRef]
  15. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004). [CrossRef]
  16. P. L. Chu and T. Whitbread, “Stress modification in optical fibre,” Electron. Lett. 20, 449–450 (1984). [CrossRef]
  17. P. C. P. Bouten, W. Hermann, C. M. G. Jochem, and D. U. Weichert, “Drawing influence on the lifetime of optical fibres,” J. Lightwave Technol. 7, 555–559 (1989). [CrossRef]
  18. S. M. Oh, P. H. Predieux, and X. G. Glavas, “Increased durability of optical fiber through the use of compressive cladding,” Opt. Lett. 7, 241–243 (1982). [CrossRef]
  19. D. I. Yeom, H. S. Kim, M. S. Kang, H. S. Park, and B. Y. Kim, “Narrow-bandwidth all-fiber acoustooptic tunable filter with low polarization-sensitivity,” IEEE Photon. Technol. Lett. 17, 2646–2648 (2005). [CrossRef]
  20. Y. Park, U.-C. Paek, and D. Y. Kim, “Determination of stress-induced intrinsic birefringence in a single-mode fiber by measurement of the two-dimensional stress profile,” Opt. Lett. 27, 1291–1293 (2002). [CrossRef]
  21. M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photon. Technol. Lett. 16, 2634–2636 (2004). [CrossRef]
  22. S. M. Pietralunga, M. Ferrario, M. Tacca, and M. Martinelli, “Local birefringence in unidirectionally spun fibers,” J. Lightwave Technol. 24, 4030–4038 (2006). [CrossRef]
  23. Y. Park, U.-C. Paek, and D. Y. Kim, “Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography,” Opt. Lett. 27, 1217–1219 (2002). [CrossRef]
  24. I. H. Shin, B. H. Kim, S. P. Veetil, W. T. Han, and D. Y. Kim, “Residual stress relaxation in cleaved fibers,” Opt. Commun. 281, 75–79 (2008). [CrossRef]
  25. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995). [CrossRef]
  26. H. G. Limberger, C. Ban, R. P. Salathe, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15, 5610–5615 (2007). [CrossRef]
  27. N. Belhadj, Y. Park, S. LaRochelle, K. Dossou, and J. Azana, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16, 8727–8741 (2008). [CrossRef]
  28. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001). [CrossRef]
  29. B. H. Kim, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002). [CrossRef]
  30. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003). [CrossRef]
  31. F. Durr, H. G. Limberger, R. P. Salathe, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84, 4983–4985 (2004). [CrossRef]
  32. F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathe, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005). [CrossRef]
  33. A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightwave Technol. 22, 16–23 (2004). [CrossRef]
  34. B. L. Bachim and T. K. Gaylord, “Microinterferometric optical phase tomography measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices,” Appl. Opt. 44, 316–327 (2005). [CrossRef]
  35. B. L. Bachim, T. K. Gaylord, and S. C. Mettler, “Refractive-index profiling of azimuthally asymmetric optical fibers by microinterferometric optical phase tomography,” Opt. Lett. 30, 1126–1128 (2005). [CrossRef]
  36. M. Sochacka, “Optical fibers profiling by phase-stepping transverse interferometry,” J. Lightwave Technol. 12, 19–23 (1994). [CrossRef]
  37. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010). [CrossRef]
  38. T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: Application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005). [CrossRef]
  39. L. Bruno, L. Pagnotta, and A. Poggialini, “A full-field method for measuring residual stresses in optical fiber,” Opt. Lasers Eng. 44, 577–588 (2006). [CrossRef]
  40. P. Kniazewski, T. Kozacki, and M. Kujawinska, “Inspection of axial stress and refractive index distribution in polarization-maintaining fiber with tomographic methods,” Opt. Lasers Eng. 47, 259–263 (2009). [CrossRef]
  41. B. Sevigny, F. Busque, N. Godbout, S. Lacroix, and M. Faucher, “High-resolution refractive index anisotropy measurement in optical fibers through phase retardation modulation,” Appl. Opt. 47, 1215–1222 (2008). [CrossRef]
  42. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998). [CrossRef]
  43. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  44. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000). [CrossRef]
  45. N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006). [CrossRef]
  46. N. M. Dragomir, X. M. Goh, C. L. Curl, L. M. D. Delbridge, and A. Roberts, “Quantitative polarized phase microscopy for birefringence imaging,” Opt. Express 15, 17690–17698 (2007). [CrossRef]
  47. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Accurate cross-sectional stress profiling of optical fibers,” Appl. Opt. 48, 4985–4995 (2009). [CrossRef]
  48. M. R. Hutsel, R. R. Ingle, and T. K. Gaylord, “Technique and apparatus for accurate cross-sectional stress profiling of optical fibers,” IEEE Trans. Instrum. Meas. 60, 971–979 (2011). [CrossRef]
  49. X. M. Goh, N. M. Dragomir, D. N. Jamieson, A. Roberts, and D. X. Belton, “Optical tomographic reconstruction of ion beam induced refractive index changes in silica,” Appl. Phys. Lett. 91, 181102 (2007). [CrossRef]
  50. E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, “Index mapping for fibers with symmetric and asymmetric refractive index profiles,” Opt. Express 16, 10912–10917 (2008). [CrossRef]
  51. N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microsc. Res. Tech. 71, 5–10 (2008). [CrossRef]
  52. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003).
  53. A. Barty, “Quantitative phase-amplitude microscopy,” Ph.D. thesis (University of Melbourne, Parkville, 2000).
  54. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214, 51–61 (2004). [CrossRef]
  55. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002). [CrossRef]
  56. M. R. Hutsel, C. C. Montarou, A. I. Dachevski, and T. K. Gaylord, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008). [CrossRef]
  57. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).
  58. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84, 19–21 (2004). [CrossRef]
  59. Y. Park, U.-C. Paek, S. Han, B.-H. Kim, C.-S. Kim, and D. Y. Kim, “Inelastic frozen-in stress in optical fibers,” Opt. Commun. 242, 431–436 (2004). [CrossRef]
  60. F. Durr, H. G. Limberger, R. P. Salathe, and A. D. Yablon, “Inelastic strain birefringence in optical fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2006).
  61. M. R. Hutsel and T. K. Gaylord, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, are preparing a manuscript to be called “Residual stress relaxation and densification in CO2-laser-induced long-period fiber gratings.”
  62. D. A. Viskoe and G. W. Donohoe, “Optimal computed tomography data acquisition techniques and filter selection for detection of small density variations,” IEEE Trans. Instrum. Meas. 45, 70–76 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited