OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5458–5463

Free of reabsorption upper-state lifetime measurements by the method of transient gratings

Ivan G. Kisialiou  »View Author Affiliations

Applied Optics, Vol. 51, Issue 22, pp. 5458-5463 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light reabsorption and radiation trapping can noticeably distort fluorescence decay in solid-state laser gain media with a partial overlap of absorption and emission bands. In this paper, the upper-state lifetime measurements in laser materials by the method of transient gratings are discussed. A theoretical model for description of reabsorption in a thin layer is developed. It is shown that under certain conditions reabsorption has no effect on the transient time of refractive index grating and thus the true upper-state lifetime can be measured. Some experimental results confirming effectiveness of the technique are presented.

© 2012 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.3380) Materials : Laser materials
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Nonlinear Optics

Original Manuscript: April 3, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 20, 2012
Published: July 27, 2012

Ivan G. Kisialiou, "Free of reabsorption upper-state lifetime measurements by the method of transient gratings," Appl. Opt. 51, 5458-5463 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Noginov, “Reabsorption trapping of luminescence in laser crystals: enhancement of energy storage and upconversion,” Appl. Opt. 36, 4153–4158 (1997). [CrossRef]
  2. V. E. Kisel, A. E. Troshin, V. G. Shcherbitskii, N. V. Kuleshov, A. A. Pavlyuk, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Luminescent and lasing characteristics of heavily doped Yb3+: KY(WO4)(2) crystals,” Quantum Electron. 36, 319–323 (2006). [CrossRef]
  3. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994). [CrossRef]
  4. M. P. Hehlen, “Effect of radiation trapping on measured excited-state lifetimes in solids,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1996), paper SM16.
  5. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910 (2007). [CrossRef]
  6. H. Kühn, K. Petermann, and G. Huber, “Correction of reabsorption artifacts in fluorescence spectra by the pinhole method,” Opt. Lett. 35, 1524–1526 (2010). [CrossRef]
  7. H. J. Eichler, J. Eichler, J. Knof, and C. Noack, “Lifetimes of laser-induced population density gratings in ruby,” Physica Status Solidi A 52, 481–486 (1979). [CrossRef]
  8. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett. 31, 763–765 (2006). [CrossRef]
  9. E. V. Ivakin, A. V. Sukhadolau, O. L. Antipov, and N. V. Kuleshov, “Transient grating measurements of refractive-index changes in intensively pumped Yb-doped laser crystals,” Appl. Phys. B 86, 315–318 (2007). [CrossRef]
  10. O. L. Antipov, D. V. Bredikhin, O. N. Eremeikin, E. V. Ivakin, A. P. Savikin, A. V. Sukhodolov, and K. A. Fedorova, “Mechanisms of a change in the refractive index of an intensely pumped Yb:YAG crystal,” Quantum Electron. 36, 418–423 (2006). [CrossRef]
  11. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
  12. E. V. Ivakin and I. G. Kisialiou, “Direct quantitative estimation of the spatial energy migration between ions Yb3+ in Gd3Ga5O12 matrix,” in Proceedings CAOL 2010, International Conference on Advanced Optoelectronics and Lasers (IEEE, 2010), pp. 112–114 .
  13. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2, 183–189 (2012). [CrossRef]
  14. B. Jiang, Z. Zhao, X. Xu, P. Song, X. Wang, J. Xu, and P. Deng, “Spectral properties and charge transfer luminescence of Yb3+:Gd3Ga5O12 (Yb:GGG) crystal,” J. Cryst. Growth 277, 186–191 (2005). [CrossRef]
  15. L. D. DeLoach, S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  16. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continuous-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited