OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5464–5476

Temperature measurements in a rapid compression machine using mid-infrared H2O absorption spectroscopy near 7.6 μm

Mruthunjaya Uddi, Apurba Kumar Das, and Chih-Jen Sung  »View Author Affiliations

Applied Optics, Vol. 51, Issue 22, pp. 5464-5476 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for measuring the temporal temperature and number density in a rapid compression machine (RCM) using quantum cascade laser absorption spectroscopy near 7.6 μm is developed and presented in this paper. The ratios of H2O absorption peaks at 1316.55cm1 and 1316.97cm1 are used for these measurements. In order to isolate the effects of chemical reactions, an inert mixture of argon with 2.87% water vapor is used for the present investigation. The end of compression pressures and temperatures in the RCM measurements are PC=10, 15, and 20 bar in the range of TC=1000 to 1200 K. The measured temperature history is compared with that calculated based on the adiabatic core assumption and is found to be within ±5K. The measured temporal number density of H2O to an accuracy of 1%, using the absolute absorption of the two rovibrational lines, show that the mixture is highly uniform in temperature. A six-pass, 5.08 cm Herriott cell is used to calibrate the line strengths in air and broadening in an Ar bath gas.

© 2012 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: March 13, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 22, 2012
Published: July 27, 2012

Mruthunjaya Uddi, Apurba Kumar Das, and Chih-Jen Sung, "Temperature measurements in a rapid compression machine using mid-infrared H2O absorption spectroscopy near 7.6 μm," Appl. Opt. 51, 5464-5476 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mittal and C. J. Sung, “A rapid compression machine for chemical kinetic studies at elevated pressure and temperatures,” Combust. Sci. Technol. 179, 497–530 (2007). [CrossRef]
  2. G. Mittal and C. J. Sung, “Aerodynamics inside a rapid compression machine,” Combust. Flame 145, 160–180 (2006). [CrossRef]
  3. A. E. Lutz, R. J. Kee, and J. A. Miller, SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Report No. SAND 87-8248 (Sandia National Laboratories, 1998).
  4. R. J. Kee, F. M. Rupley, and J. A. Miller, CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics. Report No. SAND 89-8009 (Sandia National Laboratories, 1989).
  5. P. Desgroux, L. Gasnot, and L. R. Sochet, “Instantaneous temperature measurement in a rapid-compression machine using laser Rayleigh scattering,” Appl. Phys. B 61, 69–72 (1995). [CrossRef]
  6. J. Clarkson, J. F. Griffiths, J. P. Macnamara, and B. J. Whitaker, “Temperature fields during the development of combustion in a rapid compression machine,” Combust. Flame 125, 1162–1175 (2001). [CrossRef]
  7. C. Strozzi, J. Sotton, A. Mura, and M. Bellenoue, “Characterization of a two dimensional temperature field within a rapid compression machine using a toluene planar laser induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009). [CrossRef]
  8. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008). [CrossRef]
  9. B. W. M. Moeskops, H. Naus, S. M. Cristescu, and F. J. M. Harren, “Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath,” Appl. Phys. B 82, 649–654 (2006). [CrossRef]
  10. M. Brandstetter and B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B, doi: 10.1016/j.snb.2011.06.081 (2011), available online 7 July 2011.
  11. C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B 140, 24–28 (2009). [CrossRef]
  12. V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011). [CrossRef]
  13. L. Li, F. Cao, Y. Wang, M. Cong, L. Li, Y. An, Z. Song, S. Guo, F. Liu, and L. Wang, “Design and characteristics of quantum cascade laser-based CO detection system,” Sens. Actuators B 142, 33–38 (2009). [CrossRef]
  14. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31, 823–825 (2006). [CrossRef]
  15. A. Elia, C. D. Franco, V. Spagnolo, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic sensor for trace detection of formaldehyde gas,” Sensors 9, 2697–2705 (2009). [CrossRef]
  16. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008). [CrossRef]
  17. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010). [CrossRef]
  18. J. Vanderover and M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99, 353–362 (2010). [CrossRef]
  19. X. Chao, J. B. Jeffries, and R. K. Hanson, “In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser,” Proc. Combust. Inst. 33, 725–733 (2011). [CrossRef]
  20. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  21. C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46, 6923–6935(2007). [CrossRef]
  22. A. K. Das, C. J. Sung, Y. Zhang, and G. Mittal, “Ignition delay study of moist hydrogen/oxidizer mixtures using a rapid compression machine,” Int. J. Hydrogen Energy 37, 6901–6911 (2012). [CrossRef]
  23. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005). [CrossRef]
  24. C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1983).
  25. H. W. Coleman and W. G. Steele, Experimentation and Uncertainty Analysis for Engineers (Wiley, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited