OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5522–5526

Force mapping of an optical trap using an acousto-optical deflector in a time-sharing regime

Ignacio A. Martínez and Dmitri Petrov  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5522-5526 (2012)
http://dx.doi.org/10.1364/AO.51.005522


View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest and study experimentally a time-sharing protocol for acousto-optical deflectors (AODs) that permits one to map the radial optical trapping force of optical tweezers without using a controllable flux control or an additional beam. Variations of the trapping potential due to modifications of the optical system are easily detected in terms of the force map. The protocol can be used in optical tweezers that already include an AOD without adding new elements in the existing optical system.

© 2012 Optical Society of America

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(290.5820) Scattering : Scattering measurements
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Tweezers or Optical Manipulation

History
Original Manuscript: April 23, 2012
Revised Manuscript: June 17, 2012
Manuscript Accepted: June 28, 2012
Published: July 30, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Ignacio A. Martínez and Dmitri Petrov, "Force mapping of an optical trap using an acousto-optical deflector in a time-sharing regime," Appl. Opt. 51, 5522-5526 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5522


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993). [CrossRef]
  2. A. Prälle, M. Prummer, E.-L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999). [CrossRef]
  3. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. H. K. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004). [CrossRef]
  4. G. Volpe and D. Petrov, “Torque detection using brownian fluctuations,” Phys. Rev. Lett. 97, 210603 (2006). [CrossRef]
  5. K. Visscher, S. P. Gross, and S. M. Block, “Construction of mutiple-beam optical traps with nanometric-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]
  6. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996). [CrossRef]
  7. L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a brownian particle,” Phys. Rev. E 51, 5239–5250 (1995). [CrossRef]
  8. G. Wang, E. Sevick, E. Mittag, D. Searles, and D. Evans, “Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales,” Phys. Rev. Lett. 89, 0506011 (2002).
  9. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785–787 (1999). [CrossRef]
  10. K. Dholakia and P. Zemanek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010). [CrossRef]
  11. J. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, and K. Gawedzki, “Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state,” Phys. Rev. Lett. 103, 040601 (2009). [CrossRef]
  12. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, “Experimental verification of Landauer’s principle linking information and thermodynamics,” Nature 483, 187–189 (2012). [CrossRef]
  13. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007). [CrossRef]
  14. Y.-F. Chen, G. A. Blab, and J.-C. Meiners, “Stretching submicron biomolecules with constant-force axial optical tweezers,” Biophys. J. 96, 4701–4708 (2009). [CrossRef]
  15. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996). [CrossRef]
  16. W. Singer, S. Barnet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).
  17. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687–1696 (2002). [CrossRef]
  18. A. Balijepalli, T. W. LeBrun, J. J. Gorman, and S. K. Gupta, “Methods to directly measure the trapping potential in optical tweezers,” Proc. SPIE 7038, 70380V (2008). [CrossRef]
  19. A. C. Richardson, S. N. S. Reihani, and L. B. Oddershede, “Non-harmonic potential of a single beam optical trap,” Opt. Express 16, 15709–15717 (2008). [CrossRef]
  20. Y. Zhao, G. Milne, J. C. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Quantitative force mapping of an optical vortex trap,” Appl. Phys. Lett. 92, 161111 (2008). [CrossRef]
  21. T. Godazgar, R. Shokri, and S. N. S. Reihani, “Potential mapping of optical tweezers,” Opt. Lett. 36, 3284–3286(2011). [CrossRef]
  22. A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodrigez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14, 13101–13106 (2006). [CrossRef]
  23. M. Jahnel, B. Behrndt, A. Jannasch, E. Schaffer, and S. W. Grill, “Measuring the complete force field of an optical trap,” Opt. Lett. 36, 1260–1262 (2011). [CrossRef]
  24. J. E. Molloy, “Optical chopsticks: digital synthesis of multiple optical traps,” Methods Cell Biol. 55, 205–216(1998).
  25. I. A. Martínez, S. Raj, and D. Petrov, “Colored noise in the fluctuations of an extended dna molecule detected by optical trapping,” Eur. Biophys. J. 41, 99–106 (2012). [CrossRef]
  26. A. Rohrbach, and E. H. K. Stelzer, “Trapping forces, force constants and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002). [CrossRef]
  27. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. A 459, 3021–3041 (2003). [CrossRef]
  28. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited