OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5531–5542

Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system

Samuel M. Venable, III, Bradley D. Duncan, Matthew P. Dierking, and David J. Rabb  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5531-5542 (2012)
http://dx.doi.org/10.1364/AO.51.005531


View Full Text Article

Enhanced HTML    Acrobat PDF (1541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Holographic aperture ladar (HAL) is a variant of synthetic aperture ladar (SAL). The two processes are related in that they both seek to increase cross-range (i.e., the direction of the receiver translation) image resolution through the synthesis of a large effective aperture. This is in turn achieved via the translation of a receiver aperture and the subsequent coherent phasing and correlation of multiple received signals. However, while SAL imaging incorporates a translating point detector, HAL takes advantage of a two-dimensional translating sensor array. For the research presented in this article, a side-looking stripmap HAL geometry was used to sequentially image a set of Ronchi ruling targets. Prior to this, theoretical calculations were performed to determine the baseline, single subaperture resolution of our experimental, laboratory-based system. Theoretical calculations were also performed to determine the ideal modulation transfer function (MTF) and expected cross-range HAL image sharpening ratio corresponding to the geometry of our apparatus. To verify our expectations, we first sequentially captured an oversampled collection of pupil plane field segments for each Ronchi ruling. A HAL processing algorithm incorporating a high-precision speckle field registration process was then employed to phase-correct and reposition the field segments. Relative interframe piston phase errors were also removed prior to final synthetic image formation. By then taking the Fourier transform of the synthetic image intensity and examining the fundamental spatial frequency content, we were able to produce experimental modulation transfer function curves, which we then compared with our theoretical expectations. Our results show that we are able to achieve nearly diffraction-limited results for image sharpening ratios as high as 6.43.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar
(280.6730) Remote sensing and sensors : Synthetic aperture radar
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: April 3, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: July 1, 2012
Published: July 30, 2012

Citation
Samuel M. Venable, Bradley D. Duncan, Matthew P. Dierking, and David J. Rabb, "Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system," Appl. Opt. 51, 5531-5542 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5531

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited