OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 22 — Aug. 1, 2012
  • pp: 5585–5590

Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel

Qingchun Zhao, Hongxi Yin, and Xiaolei Chen  »View Author Affiliations


Applied Optics, Vol. 51, Issue 22, pp. 5585-5590 (2012)
http://dx.doi.org/10.1364/AO.51.005585


View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The purpose of this paper is to numerically investigate dense wavelength division multiplexing (DWDM) transmission between a chaotic optical secure channel and a conventional fiber-optic channel. A 2.5Gbits/s secure message masked by the chaotic optical secure channel and a 10Gbits/s message sequence carried by the conventional fiber-optic channel can be realized simultaneously when the channel spacing is 0.8 nm. The results show that the Q-factors of the recovered messages can be increased significantly when the launched optical power is reduced appropriately. The deterioration of the quality of communication caused by fiber dispersion can be compensated noticeably on the condition that the symmetrical dispersion compensation scheme is adopted. In addition, the secure message is masked by chaos shift keying in the chaotic optical secure channel. The multiplexing distance between the chaotic optical secure channel and the conventional fiber-optic channel is up to 500 km.

© 2012 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(140.1540) Lasers and laser optics : Chaos
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 23, 2012
Revised Manuscript: July 4, 2012
Manuscript Accepted: July 6, 2012
Published: July 31, 2012

Citation
Qingchun Zhao, Hongxi Yin, and Xiaolei Chen, "Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel," Appl. Opt. 51, 5585-5590 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-22-5585


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: application to encoded communications,” IEEE Photon. Technol. Lett. 8, 299–301 (1996). [CrossRef]
  2. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279, 1198–1200 (1998). [CrossRef]
  3. S. Sivaprakasam and K. A. Shore, “Signal masking for chaotic optical communication using external-cavity diode lasers,” Opt. Lett. 24, 1200–1202 (1999). [CrossRef]
  4. S. Tang and J. M. Liu, “Message encoding-decoding at 2.5  Gbits/s through synchronization of chaotic pulsing semiconductor lasers,” Opt. Lett. 26, 1843–1845 (2001). [CrossRef]
  5. K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27, 989–991 (2002). [CrossRef]
  6. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437, 343–346 (2005). [CrossRef]
  7. F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers,” Opt. Express 15, 302–311 (2007). [CrossRef]
  8. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18, 5188–5198 (2010). [CrossRef]
  9. Y. Hong, M. W. Lee, and K. A. Shore, “Optimised message extraction in laser diode based optical chaos communications,” IEEE J. Quantum Electron. 46, 253–257 (2010). [CrossRef]
  10. H. Aoyama, S. Tomida, R. Shogenji, and J. Ohtsubo, “Chaos dynamics in vertical-cavity surface-emitting semiconductor lasers with polarization-selected optical feedback,” Opt. Commun. 284, 1405–1411 (2011). [CrossRef]
  11. K. Hicke, O. D’Huys, V. Flunkert, E. Scho¨ll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E 83, 056211 (2011). [CrossRef]
  12. N. Jiang, W. Pan, L. Yan, B. Luo, S. Xiang, L. Yang, D. Zheng, and N. Li, “Chaos synchronization and communication in multiple time-delayed coupling semiconductor lasers driven by a third laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1220–1227 (2011). [CrossRef]
  13. N. Li, W. Pan, L. Yan, B. Luo, M. Xu, Y. Tang, N. Jiang, S. Xiang, and Q. Zhang, “Chaotic optical cryptographic communication using a three-semiconductor-laser scheme,” J. Opt. Soc. Am. B 29, 101–108 (2012). [CrossRef]
  14. K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108, 070602 (2012). [CrossRef]
  15. A. Argyris, M. Hamacher, K. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008). [CrossRef]
  16. A. Uchida, S. Kinugawa, T. Matsuura, and S. Yoshimori, “Dual synchronization of chaos in microchip lasers,” Opt. Lett. 28, 19–21 (2003). [CrossRef]
  17. R. Vicente, C. R. Mirasso, and I. Fischer, “Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett. 32, 403–405 (2007). [CrossRef]
  18. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback,” IEEE Photon. Technol. Lett. 20, 1633–1635 (2008). [CrossRef]
  19. A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32, 2134–2136 (2007). [CrossRef]
  20. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435(2010). [CrossRef]
  21. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos and synchronization,” Phys. Rev. E 80, 026207 (2009). [CrossRef]
  22. R. Modeste Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011). [CrossRef]
  23. J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17, 6357–6367 (2009). [CrossRef]
  24. A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, “Transmission effects in wavelength division multiplexed chaotic optical communication systems,” J. Lightwave Technol. 28, 3107–3114 (2010). [CrossRef]
  25. Q. Zhao, and H. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012). [CrossRef]
  26. J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860–862 (2001). [CrossRef]
  27. J. Hizanidis, S. Deligiannidis, A. Bogris, and D. Syvridis, “Enhancement of chaos encryption potential by combining all-optical and electrooptical chaos generators,” IEEE J. Quantum Electron. 46, 1642–1649 (2010). [CrossRef]
  28. M. C. Soriano, L. Zunino, O. A. Rosso, I. Fischer, and C. R. Mirasso, “Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis,” IEEE J. Quantum Electron. 47, 252–261 (2011). [CrossRef]
  29. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol. 29, 3210–3222 (2011). [CrossRef]
  30. D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22, 2256–2263 (2004). [CrossRef]
  31. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic, 2007), Chap. 7, pp. 226–273.
  33. X. M. Chen, J. X. Ma, and Y. T. Yang, “Design of 50 G nonpolarizing dense wavelength division multiplexer angle-tuning bandpass filter,” Appl. Opt. 49, 5271–5275 (2010). [CrossRef]
  34. H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection,” Opt. Express 17, 19536–19543 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited