OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5601–5608

Enhanced backscattering for infrared detection using photonic crystal based flat lens

Jonathan Oden, Maxence Hofman, Xavier Mélique, Didier Lippens, and Olivier Vanbésien  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5601-5608 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An n=1 flat lens based on photonic crystal semiconductor technology is evaluated for infrared detection purposes. The idea consists in exploiting the backscattered waves of an incident plane wave impinging on a target placed in the focal region of a flat lens. It is shown that subwavelength detection of micronic dielectric targets can be obtained at 1.55 μm using the double focus of reflected waves induced by negative refraction. Complex relations among the intrinsic nature, the shape and size of the target, and detection efficiency are interpreted in terms of target eigenmode excitation. Reflectivity is modulated by the intrinsic mode nature, transverse, circular, or longitudinal, with an enhancement of the detection sensitivity in the case of whispering-gallery modes. It is believed that such a study paves the way to the definition of original noninvasive infrared sensors.

© 2012 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(170.6960) Medical optics and biotechnology : Tomography
(220.2740) Optical design and fabrication : Geometric optical design
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: April 2, 2012
Revised Manuscript: May 21, 2012
Manuscript Accepted: June 28, 2012
Published: August 2, 2012

Jonathan Oden, Maxence Hofman, Xavier Mélique, Didier Lippens, and Olivier Vanbésien, "Enhanced backscattering for infrared detection using photonic crystal based flat lens," Appl. Opt. 51, 5601-5608 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative of ε and μ,” Sov. Phys.-Usp 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  3. N. Engheta and R. W. Ziolkowski, “A positive future for double negative metamaterials,” IEEE Trans. Microwave Theory Tech. 53, 1535–1556 (2005). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  5. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 073905 (2006). [CrossRef]
  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a two dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004). [CrossRef]
  7. C. Croënne, N. Fabre, D. P. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77, 125333 (2008). [CrossRef]
  8. M. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielan, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  9. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Masser, D. Schurig, and D. R. Smith, “Free space microwave focusing by negative index gradient lens,” Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  10. Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express 16, 16941–16949 (2008). [CrossRef]
  11. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, “Negative index imaging by an index-matched photonic crystal slab,” Phys. Rev. B 73, 195117 (2006). [CrossRef]
  12. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006). [CrossRef]
  13. Z. Lu, B. Miao, T. R. Hodson, C. Lin, J. A. Muralowski, and D. W. Prather, “Negative refraction imaging in a hybrid photonic crystal device at near-infrared frequencies,” Opt. Express 15, 1286–1291 (2007). [CrossRef]
  14. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a two dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005). [CrossRef]
  15. N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Optimized focusing properties of photonic crystal slabs,” Opt. Commun. 281, 3571–3577 (2008). [CrossRef]
  16. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal lenses with n=−1,” Opt. Commun. 283, 1169–1173 (2010). [CrossRef]
  17. B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. H. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996(2009). [CrossRef]
  18. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114(2010). [CrossRef]
  19. D. R. Smith and N. Kroll, “Negative refraction index in left-handed materials,” Phys. Rev. Lett. 85, 2933–2936 (2000). [CrossRef]
  20. Y. Ben-Aryeh, “Nonclassical high resolution effects produced by evanescent waves,” J. Opt. B 5, S553–S556 (2003). [CrossRef]
  21. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14, 8463–8479 (2002). [CrossRef]
  22. J. B. Pendry, and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003). [CrossRef]
  23. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403(2002). [CrossRef]
  24. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?,” J. Opt. Soc. Am. A 21, 122–131 (2004). [CrossRef]
  25. A. L. Efros and C. Li, “Electrodynamics of left-handed medium,” SSP 121–123, 1065–1068 (2007). [CrossRef]
  26. G. Wang, J. Fang, and X. T. Dong, “Refocusing of backscattered microwaves in target detection by using LHM flat lens,” Opt. Express 15, 3312–3317 (2007). [CrossRef]
  27. G. Wang, J. Fang, and X. T. Dong, “Resolution of near-field microwave target detection and imaging by using flat LHM lens,” IEEE Trans. Antennas Propag. 55, 3534–3541 (2007). [CrossRef]
  28. M. Hofman, D. Lippens, and O. Vanbésien, “Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm,” Appl. Opt. 49, 5806–5813 (2010). [CrossRef]
  29. N. Fabre, S. Fasquel, C. Legrand, X. Mélique, M. Muller, M. François, O. Vanbésien, and D. Lippens, “Towards focusing using photonic crystal lens,” Optoelectron. Rev. 14, 225–232 (2006). [CrossRef]
  30. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection coatings for a photonic crystal flat lens,” Opt. Lett. 34, 3532–3534 (2009). [CrossRef]
  31. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett. 101, 073901 (2008). [CrossRef]
  32. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Mélique, O. Vanbésien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97, 071119 (2010). [CrossRef]
  33. X. Pan, “Tomographic image reconstruction,” in Proceedings of the 41st annual meeting of the American Association of Physicists in Medicine, www.aapm.org/meetings/99AM/pdf/2806-57576.pdf (1999).
  34. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, 2nd ed.(Academic, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited