OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5609–5618

Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence

Rumao Tao, Lei Si, Yanxing Ma, Pu Zhou, and Zejin Liu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 23, pp. 5609-5618 (2012)
http://dx.doi.org/10.1364/AO.51.005609


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens–Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

© 2012 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.7060) Atmospheric and oceanic optics : Turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 26, 2012
Manuscript Accepted: June 20, 2012
Published: August 2, 2012

Citation
Rumao Tao, Lei Si, Yanxing Ma, Pu Zhou, and Zejin Liu, "Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence," Appl. Opt. 51, 5609-5618 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-23-5609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Beland, “Some aspects of propagation through weak isotropic non-Kolmogorov turbulence,” Proc. SPIE 2375A, 1111–1126 (1995). [CrossRef]
  2. C. Rao, W. Jiang, and N. Ling, “Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence,” J. Mod. Opt. 47, 1111–1126 (2000). [CrossRef]
  3. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Lidar studies of aerosols and non-Kolmogorov turbulence in the Mediterranean troposphere,” Proc. SPIE 5987, 598702 (2005). [CrossRef]
  4. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995). [CrossRef]
  5. M. S. Belen’kii, S. J. Kars, and C. L. Osmon, “Experimental evidence of the effects of non-Kolmogorov turbulence,” Proc. SPIE 3749, 50–51 (1999). [CrossRef]
  6. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, “Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor,” Opt. Lett. 17, 1737–1739 (1992). [CrossRef]
  7. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007). [CrossRef]
  8. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for laser beam propagation through non Kolmogorov turbulence for uplink and downlink paths,” Proc. SPIE 6708, 670803 (2007). [CrossRef]
  9. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagationthrough non-Kolmogorov turbulence,” Opt. Eng. 47, 026003 (2008). [CrossRef]
  10. P. Zhou, Y. Ma, X. Wang, H. Zhao, and Z. Liu, “Average spreading of a Gaussian beam array in non-Kolmogorov turbulence,” Opt. Lett. 35, 1043–1045 (2010). [CrossRef]
  11. O. Korotkova and E. Shchepakina, “Color changes in stochastic light fields propagating in non-Kolmogorov turbulence,” Opt. Lett. 35, 3772–3774 (2010). [CrossRef]
  12. H. Tang, B. Ou, B. Luo, H. Guo, and A. Dang, “Average spreading of a radial Gaussian beam array in non-Kolmogorov turbulence,” J. Opt. Soc. Am. A 28, 1016–1021 (2011). [CrossRef]
  13. G. Wu, H. Guo, S. Yu, and B. Luo, “Spreading and direction of Gaussian–Schell model beam through a non-Kolmogorov turbulence,” Opt. Lett. 35, 715–717 (2010). [CrossRef]
  14. H. Xu, Z. Cui, and J. Qu, “Propagation of elegant Laguerre–Gaussian beam in non-Kolmogorov turbulence,” Opt. Express 19, 21163–21173 (2011). [CrossRef]
  15. J. Cang and X. Liu, “Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence,” Opt. Lett. 36, 3335–3337 (2011). [CrossRef]
  16. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005). [CrossRef]
  17. G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammonsm, H. Injeyan, H. Komine, J. W. H. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, W. S. Benjamin, and M. Wickham, “Brightness-scaling potential of actively coherently combined solid-state laser arrays,” IEEE J. Sel. Top. Quantum Electron. 13, 460–472 (2007). [CrossRef]
  18. E. C. Cheung, J. G. Ho, G. D. Goodno, R. R. Rice, J. Rothenberg, P. Thielen, M. Weber, and M. Wickham, “Diffractive-optics-based beam combination of a phase-locked fiber laser array,” Opt. Lett. 33, 354–356 (2008). [CrossRef]
  19. J. Anderegg, S. Brosnan, E. C. Cheung, P. Epp, D. Hammons, H. Komine, M. Weber, and M. Wickham, “Coherently coupled high power fiber arrays,” Proc. SPIE 6102, 61020U (2006). [CrossRef]
  20. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24, 1707–1715 (2007). [CrossRef]
  21. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. Nelson, and C. A. Lu, “First experimental demonstration of self-synchronous phase locking of an optical array,” Opt. Express 14, 12022–12027 (2006). [CrossRef]
  22. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006). [CrossRef]
  23. T. Shirai, A. Dogariu, and E. Wolf, “Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence,” Opt. Lett. 28, 610–612 (2003). [CrossRef]
  24. H. T. Eyyuboglu, Y. Cai, and Y. Baykal, “Spectral shifts of general beams in turbulent media,” J. Opt. A 10, 015005 (2008). [CrossRef]
  25. H. T. Eyyuboglu, Y. Baykal, E. Sermutlu, O. Korotkova, and Y. Cai, “Scintillation index of modified Bessel–Gaussian beams propagating in turbulent media,” J. Opt. Soc. Am. A 26, 387–394 (2009). [CrossRef]
  26. Y. Cai, Y. Chen, H. T. Eyyuboglu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007). [CrossRef]
  27. X. Li, X. Ji, H. T. Eyyuboglu, and Y. Baykal, “Turbulence distance of radial Gaussian Schell-model array beams,” Appl. Phys. B 98, 557–565 (2010). [CrossRef]
  28. Y. Cai and S. He, “Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31, 568–570 (2006). [CrossRef]
  29. M. A. Molchan, E. V. Doktorov, and R. A. Vlasov, “Propagation of vector fractional charge Laguerre–Gaussian light beams in the thermally nonlinear moving atmosphere,” Opt. Lett. 35, 670–672 (2010). [CrossRef]
  30. K. R. Manes and W. W. Simmons, “Statistical optics applied to high-power glass lasers,” J. Opt. Soc. Am. A 2, 528–538 (1985). [CrossRef]
  31. B. Lü and B. Zhang, “Propagation and focusing of laser beams with amplitude modulations and phase fluctuations,” Opt. Commun. 135, 361–368 (1997). [CrossRef]
  32. X. Ji and X. Li, “Propagation properties of apertured laser beams with amplitude modulations and phase fluctuations through atmospheric turbulence,” Appl. Phys. B 104, 207–213 (2011). [CrossRef]
  33. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shaped and bandwidth modification,” Phys. Rev. A 26, 12–18 (1982). [CrossRef]
  34. D. Ding and X. Liu, “Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture,” J. Opt. Soc. Am. A 16, 1286–1293 (1999). [CrossRef]
  35. S. Zhu and Y. Cai, “M2-factor of a truncated electromagnetic Gaussian Schell-model beam,” Appl. Phys. B 103, 971–984 (2011). [CrossRef]
  36. F. Cheng and Y. Cai, “Propagation factor of a truncated partially coherent flat-topped beam in turbulent atmosphere,” Opt. Commun. 284, 30–37 (2011). [CrossRef]
  37. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  38. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010). [CrossRef]
  39. P. Zhou, X. Wang, Y. Ma, H. Ma, Z. Liu, and X. Xu, “Optimal truncation of element beam in a coherent fiber laser array,” Chin. Phys. Lett. 26, 044206 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited