OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5657–5663

Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation

Yu-Jie Ma, Fei Lu, Xian-Bing Ming, Ming Chen, Xiu-Hong Liu, and Jiao-Jian Yin  »View Author Affiliations


Applied Optics, Vol. 51, Issue 23, pp. 5657-5663 (2012)
http://dx.doi.org/10.1364/AO.51.005657


View Full Text Article

Enhanced HTML    Acrobat PDF (877 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the lattice damage and annealing properties of the 500 keV Si+ ions implanted Nd:YVO4 crystal with different doses. The Rutherford backscattering spectrometry/channeling technique was used to analyze the damage profiles of ion-implanted samples. A series of post-implant annealing was performed at temperatures from 250 °C to 400 °C to investigate the relation between lattice damage profile and the waveguide formation. Implantations at doses of more than 5×1014ions/cm2 can result in high damage ratio in the near-surface region and the lattice structure cannot be restored even after annealing at 400 °C. Such seriously damaged lattice is relatively stable and contributes to the waveguide structure. Convergence of the refractive index at the surface region after ion implantation is believed mainly due to the elastic collisions with the target atoms caused by nuclear energy loss.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3380) Materials : Laser materials
(230.7390) Optical devices : Waveguides, planar
(310.2790) Thin films : Guided waves

ToC Category:
Thin Films

History
Original Manuscript: May 3, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: July 4, 2012
Published: August 2, 2012

Citation
Yu-Jie Ma, Fei Lu, Xian-Bing Ming, Ming Chen, Xiu-Hong Liu, and Jiao-Jian Yin, "Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation," Appl. Opt. 51, 5657-5663 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-23-5657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Agnesi, C. Pennacchio, and G. C. Reali, “High-power diode-pumped picoseconds Nd3+:YVO4 laser,” Opt. Lett. 22, 1645–1647 (1997). [CrossRef]
  2. A. Agnesi, G. C. Reali, and P. G. Gobbi, “430 mW single-transverse mode diode-pump Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34, 1297–1300 (1998). [CrossRef]
  3. G. Q. Gu, F. Zhou, G. Zhang, and M. K. Chin, “Passive Q-switched single-frequency Nd:YVO4 laser with GaAs saturable absorber,” Electron. Lett. 34, 564–565 (1998). [CrossRef]
  4. P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the F43/2–I49/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000). [CrossRef]
  5. P. D. Townsend, “An overview of ion-implanted optical waveguide profiles,” Nucl. Instrum. Methods Phys. Res. B 46, 18–25 (1990). [CrossRef]
  6. C. Buchal, “Ion implantation for photorefractive devices and optical emitters,” Nucl. Instrum. Methods Phys. Res. B 166, 743–749 (2000). [CrossRef]
  7. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67, 131–150 (1998). [CrossRef]
  8. M. L. Bibra, J. Canning, and A. Roberts, “Mode profile modification of H+ ion beam irradiated waveguides using UV processing,” J. Non-Cryst. Solids 239, 121–125 (1998). [CrossRef]
  9. F. Chen, Q. M. Lu, and X. L. Wang, “MeV Ni+ ion-implanted planar waveguide in Nd:YVO4 crystal,” Appl. Surf. Sci. 199, 307–311 (2002). [CrossRef]
  10. F. Chen, X. L. Wang, and K. M. Wang, “Planar waveguides in BiB3O6 and Nd:YVO4 crystals by ion implantation,” Appl. Surf. Sci. 191, 61–66 (2002). [CrossRef]
  11. G. Fu, K. M. Wang, and X. L. Wang, “Formation of planar optical waveguide by multi energy Si ion implantation into Nd:YVO4 crystal,” Surf. Coat. Technol. 201, 5427–5430(2007). [CrossRef]
  12. F. Chen, X. L. Wang, and K. M. Wang, “Ion-implanted Nd:YVO4 planar waveguide: refractive-index characterization and propagation mode reduction,” Opt. Lett. 27, 1111–1113(2002). [CrossRef]
  13. F. Chen, X. L. Wang, and Q. M. Lu, “Property study of Si+-ion-implanted Nd:YVO4 waveguides,” Appl. Phys. B: Lasers Opt. 75, 895–897 (2002). [CrossRef]
  14. M. E. Sánchez-Morales, G. V. Vázquez, P. Moretti, and H. Márquez, “Optical waveguides in Nd:YVO4 crystals by multi-implants with protons and helium ions,” Opt. Mater. (Amsterdam) 29, 840–844 (2007). [CrossRef]
  15. G. V. Vázquez, M. E. Sánchez-Morales, and H. Márquez, “Analysis of ion implanted waveguides formed on Nd:YVO4 crystals,” Opt. Commun. 240, 351–355 (2004). [CrossRef]
  16. X. H. Liu, K. M. Wang, J. H. Zhao, S. M. Zhang, and M. Chen, “Annealing behavior of single mode planar waveguide in YVO4 produced by He ion implantation,” Opt. Mater. (Amsterdam) 33, 424–427 (2011). [CrossRef]
  17. K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47, 421–426 (1990). [CrossRef]
  18. L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41, 3776–3782 (1970). [CrossRef]
  19. F. Harbsmeier and W. Bolse, “Ion beam induced amorphization in α quartz,” J. Appl. Phys. 83, 4049–4054 (1998). [CrossRef]
  20. F. Harbsmeier and W. Bolse, “Nucleation and growth of the amorphous phase in Na-irradiated quartz,” Mater. Sci. Forum 248-249, 279–284 (1997). [CrossRef]
  21. W. Bolse, “Amorphization and recrystallization of covalent tetrahedral networks,” Nucl. Instrum. Methods Phys. Res. B 148, 83–92 (1999). [CrossRef]
  22. K. Peithmann, M. R. Zamani-meymian, M. Haaks, and K. Maier, “Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage,” Appl. Phys. B 82, 419–422 (2006). [CrossRef]
  23. J. Olivares, A. García-Navarro, A. Méndez, F. Agulló-López, and G. García, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods Phys. Res. B 257, 765–770 (2007). [CrossRef]
  24. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, and O. Caballero, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  25. B. Canut, S. M. M. Ramos, R. Brenier, P. Thevenard, J. L. Loubet, and M. Toulemonde, “Surface modification of LiNbO3 single crystals induced by swift heavy ions,” Nucl. Instrum. Methods Phys. Res. B 107, 194–198 (1996). [CrossRef]
  26. A. Meftah, F. Brisard, J. M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, “Track formation in SiO2 quartz and the thermal-spike mechanism,” Phys. Rev. B 49, 12457–12463 (1994). [CrossRef]
  27. M. Toulemonde, E. Balanzatm, S. Bouffard, J. J. Grob, M. Hage-Ali, and J. P. Stoquert, “Damage induced by high electronic stopping power in SiO2 quartz,” Nucl. Instrum. Methods Phys. Res. B 46, 64–68 (1990). [CrossRef]
  28. W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. B 141, 338–342 (1998). [CrossRef]
  29. W. Wesch, Th. Opfermann, F. Schrempel, and Th. Höche, “Track formation in KTiOPO4 by MeV implantation of light ions,” Nucl. Instrum. Methods Phys. Res. B 175, 88–92(2001). [CrossRef]
  30. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, and C. Sada, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002). [CrossRef]
  31. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, and P. Mazzoldi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242–247 (2004). [CrossRef]
  32. F. Chen, X.-L. Wang, S.-L. Li, G. Fu, and K.-M. Wang, “Low-loss optical planar waveguides in YVO4 produced by silicon ion implantation at low doses,” J. Appl. Phys. 94, 4708–4710(2003). [CrossRef]
  33. J. F. Gibbons, “Ion implantation in semiconductors-Part II: Damage production and annealing,” Proc. IEEE 60, 1062–1096 (1972). [CrossRef]
  34. S. M. M. Ramos, B. Canut, M. Ambri, N. Bonardi, M. Pitaval, H. Bernas, and J. Chaumont, “Defect creation in LiNbO3irradiated by medium masses ions in the electronic stopping power regime,” Radiat. Eff. Defects Solids 143, 299–309 (1998). [CrossRef]
  35. W. Wesch, A. Kamarou, and E. Wendler, “Effect of high electronic energy deposition in semiconductors,” Nucl. Instrum. Methods Phys. Res. B 225, 111–128 (2004). [CrossRef]
  36. E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion mass and temperature dependence of damage production in ion implanted InP,” J. Appl. Phys. 82, 5965–5975 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited