OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5676–5685

Efficient sparse reconstruction algorithm for bioluminescence tomography based on duality and variable splitting

Wei Guo, Kebin Jia, Dong Han, Qian Zhang, Xueyan Liu, Jinchao Feng, Chenghu Qin, Xibo Ma, and Jie Tian  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5676-5685 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bioluminescence tomography (BLT) can three-dimensionally and quantitatively resolve the molecular processes in small animals in vivo. In this paper, we propose a BLT reconstruction algorithm based on duality and variable splitting. By using duality and variable splitting to obtain a new equivalent constrained optimization problem and updating the primal variable as the Lagrangian multiplier in the dual augmented Lagrangian problem, the proposed method can obtain fast and stable source reconstruction even without the permissible source region and multispectral measurements. Numerical simulations on a mouse atlas and in vivo mouse experiments were conducted to validate the effectiveness and potential of the method.

© 2012 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 11, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 17, 2012
Published: August 7, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Wei Guo, Kebin Jia, Dong Han, Qian Zhang, Xueyan Liu, Jinchao Feng, Chenghu Qin, Xibo Ma, and Jie Tian, "Efficient sparse reconstruction algorithm for bioluminescence tomography based on duality and variable splitting," Appl. Opt. 51, 5676-5685 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the revolution of wholebody photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005). [CrossRef]
  2. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008). [CrossRef]
  3. J. Tian, J. Bai, X. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008). [CrossRef]
  4. A. M. Loening, A. M. Wu, and S. S. Gambhir, “Red-shifted Renilla reniformis luciferase variants for imaging in living subjects,” Nat. Med. 4, 641–643 (2007). [CrossRef]
  5. K. Liu, J. Tian, Y. Lu, C. Qin, X. Yang, S. Zhu, and X. Zhang, “A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations,” Opt. Express 18, 3732–3745 (2010). [CrossRef]
  6. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004). [CrossRef]
  7. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365–367 (2006). [CrossRef]
  8. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35, 4863–4871 (2008). [CrossRef]
  9. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007). [CrossRef]
  10. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53, 3921–3942 (2008). [CrossRef]
  11. G. Wang, W. Cong, K. Durairaj, X. Qian, H. O. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801–7809 (2006). [CrossRef]
  12. C. Qin, J. Tian, X. Yang, J. Feng, K. Liu, J. Liu, G. Yan, S. Zhu, and M. Xu, “Adaptive improved element free Galerkin method for quasi- or multi-spectral bioluminescence tomography,” Opt. Express 17, 21925–21934 (2009). [CrossRef]
  13. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16, 15640–15654(2008). [CrossRef]
  14. K. Liu, J. Tian, X. Yang, Y. Lu, C. Qin, S. Zhu, and X. Zhang, “A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations,” Opt. Express 18, 3732–3745 (2010). [CrossRef]
  15. Y. Lu, H. B. Machado, A. Douraghy, D. Stout, H. Herschman, and A. F. Chatziioannou, “Experimental bioluminescence tomography with fully parallel radiative-transfer-based reconstruction framework,” Opt. Express 17, 16681–16695 (2009). [CrossRef]
  16. Y. Lu, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14, 8211–8223 (2006). [CrossRef]
  17. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009). [CrossRef]
  18. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010). [CrossRef]
  19. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation. Part 1: L1 regularization,” Opt. Express 18, 1854–1871 (2010). [CrossRef]
  20. X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu, and J. Tian, “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Opt. Express 18, 24825–24841 (2010). [CrossRef]
  21. J. M. Bioucas-Dias and M. A. T. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Trans. Image Process. 19, 1720–1730 (2010). [CrossRef]
  22. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010). [CrossRef]
  23. D. Han, J. Tian, C. Qin, B. Zhang, K. Liu, and X. Ma, “A fast reconstruction method for fluorescence molecular tomography based on improved iterated shrinkage,” Proc. SPIE 7965, 79651C (2011). [CrossRef]
  24. C. Wu and X. Tai, “Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,” SIAM J. Imaging Sci. 3, 300–339 (2010). [CrossRef]
  25. S. Setzer, “Operator splittings, Bregman methods and frame shrinkage in image processing,” Int. J. Comput. Vis. 92, 265–280 (2011). [CrossRef]
  26. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef]
  27. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005). [CrossRef]
  28. H. Gao, H. Zhao, W. Cong, and G. Wang, “Bioluminescence tomography with Gaussian prior,” Biomed. Opt. Express 1, 1259–1277 (2010). [CrossRef]
  29. A. Cong, W. Cong, Y. Lu, P. Santago, A. Chatziioannou, and G. Wang, “Differential evolution approach for regularized bioluminescence tomography,” IEEE Trans. Biomed. Eng. 57, 2229–2238 (2010). [CrossRef]
  30. R. Tomioka and M. Sugiyama, “Dual augmented Lagrangian method for efficient sparse reconstruction,” IEEE Signal Process. Lett. 16, 1067–1070 (2009). [CrossRef]
  31. M. Freiberger, C. Clason, and H. Scharfetter, “Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach,” Appl. Opt. 49, 3741–3747 (2010). [CrossRef]
  32. S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale L1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007). [CrossRef]
  33. J. Feng, K. Jia, C. Qin, G. Yan, S. Zhu, X. Zhang, J. Liu, and J. Tian, “Three-dimensional bioluminescence tomography based on Bayesian approach,” Opt. Express 17, 16834–16848 (2009). [CrossRef]
  34. Y. Lu, J. Tian, W. Cong, G. Wang, W. Yang, C. Qin, and M. Xu, “Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation,” Phys. Med. Biol. 52, 4497–4512 (2007). [CrossRef]
  35. X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011). [CrossRef]
  36. X. Ma, J. Tian, C. Qin, X. Yang, B. Zhang, Z. Xue, X. Zhang, D. Han, D. Dong, and X. Liu, “Early detection of liver cancer based on bioluminescence tomography,” Appl. Opt. 50, 1389–1395 (2011). [CrossRef]
  37. B. Zhang, X. Yang, C. Qin, D. Liu, S. Zhu, J. Feng, L. Sun, K. Liu, D. Han, X. Ma, X. Zhang, J. Zhong, X. Li, X. Yang, and J. Tian, “A trust region method in adaptive finite element framework for bioluminescence tomography,” Opt. Express 18, 6477–6491 (2010). [CrossRef]
  38. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited