OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5735–5742

Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes

Bo Meng, Ling-ling Wang, Wei-qing Huang, Xiao-fei Li, Xiang Zhai, and Hong Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 23, pp. 5735-5742 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a procedure to generate slow light with a large group index, wideband, and low dispersion in our suggested photonic crystal waveguide. By modulation of the declinations in the first two rows of air holes, the group index, the bandwidth, and the dispersion can be tuned effectively. Utilizing the two-dimensional plane wave expansion method (PWE) and the finite-difference time-domain method (FDTD), we demonstrate slow light with the group indices of 23, 35, and 45, respectively, while restricting the group-index variation within a 10% range. We accordingly attain an available bandwidth of 40.7, 23.7, and 5.1 nm, respectively. Meanwhile, the normalized delay–bandwidth product stays around 0.45, with minimal dispersion less than 0.2(ps2/m) for all the cases.

© 2012 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.7390) Optical devices : Waveguides, planar
(260.2030) Physical optics : Dispersion
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: May 7, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 21, 2012
Published: August 9, 2012

Bo Meng, Ling-ling Wang, Wei-qing Huang, Xiao-fei Li, Xiang Zhai, and Hong Zhang, "Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes," Appl. Opt. 51, 5735-5742 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  2. R. Won, “Slow light now and then,” Nature 2, 454–455 (2008).
  3. T. F. Krauss, “Why do we need slow light?,” Nature 2, 448–450 (2008). [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nature 2, 465–473 (2008). [CrossRef]
  5. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40, 2666–2670 (2007). [CrossRef]
  6. F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, “Slow and fast light in photorefractive GaAs–AlGaAs multiple quantum wells in transverse geometry,” J. Appl. Phys. 108, 063101 (2010). [CrossRef]
  7. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001). [CrossRef]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  10. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III–V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767–2769 (2003). [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  12. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef]
  13. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006). [CrossRef]
  14. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  15. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007). [CrossRef]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  17. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  18. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003). [CrossRef]
  19. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  20. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010). [CrossRef]
  21. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008). [CrossRef]
  22. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef]
  23. J. Wu, Y. P. Li, C. Peng, and Z. Y. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010). [CrossRef]
  24. D. B. Wang, J. Zhang, L. H. Yuan, J. L. Lei, S. Chen, J. W. Han, and S. L. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011). [CrossRef]
  25. J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011). [CrossRef]
  26. A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, J. Takahashi, and T. Tamamura, “Two-dimensional Si photonic crystals on oxide using SOI substrate,” Opt. Quantum Electron. 34, 113–121 (2002). [CrossRef]
  27. G. P. Agarwal, Fiber-Optic Communication Systems (Wiley-Interscience, 1997).
  28. A. Adibi, Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B 64, 041102 (2001). [CrossRef]
  29. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line–defect waveguiding in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  30. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009). [CrossRef]
  31. U. Peschel, T. Peschel, and F. Lederer, “A compact device for highly efficient dispersion compensation in fiber transmission,” Appl. Phys. Lett. 67, 2111–2113 (1995). [CrossRef]
  32. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited