OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 23 — Aug. 10, 2012
  • pp: 5752–5757

Nonlinear response of a silicon waveguide enhanced by a metal grating

Zhihong Chen, Lei Dai, and Chun Jiang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 23, pp. 5752-5757 (2012)
http://dx.doi.org/10.1364/AO.51.005752


View Full Text Article

Enhanced HTML    Acrobat PDF (780 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate that nonlinear optical response in a thin silicon waveguide within a wide wavelength regime can be enhanced by a metal grating. Numerical simulation indicates that the enhancement factor of the four-wave mixing signal varies with the position. The largest enhancement factor of the four-wave mixing is more than 104 at a certain position in the IR spectrum with proper geometric parameters. More importantly, the wavelength of four-wave mixing with the same enhancement factor can be controlled dynamically within a wide wavelength regime.

© 2012 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(160.3918) Materials : Metamaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 24, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 10, 2012
Published: August 10, 2012

Citation
Zhihong Chen, Lei Dai, and Chun Jiang, "Nonlinear response of a silicon waveguide enhanced by a metal grating," Appl. Opt. 51, 5752-5757 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-23-5752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000). [CrossRef]
  3. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Kerman, L. Tong, and M. Qiu, “Nano waveguides, couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010). [CrossRef]
  4. Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Opt. Express 18, 15531–15543 (2010). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  7. W. Liu, D. N. Neshev, A. E. Miroshnichenko, I. V. Shadrivov, and Y. S. Kivshar, “Polychromatic nanofocusing of surface plasmon polaritons,” Phys. Rev. B 83, 073404 (2011). [CrossRef]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  9. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef]
  10. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010). [CrossRef]
  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010). [CrossRef]
  12. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010). [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  14. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005). [CrossRef]
  15. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]
  16. M. Danckwerts, and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  17. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt. 11, 114030 (2009). [CrossRef]
  18. J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef]
  19. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010). [CrossRef]
  20. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011). [CrossRef]
  21. A. P. Hibbins and J. R. Sambles, “Squeezing millimeterwaves into microns,” Phys. Rev. Lett. 92, 143904 (2004). [CrossRef]
  22. P. Jouy, Y. Todorov, A. Vasanelli, R. Colombelli, I. Sagnes, and C. Sirtori, “Coupling of a surface plasmon with localized subwavelength microcavity modes,” Appl. Phys. Lett. 98, 021105 (2011). [CrossRef]
  23. E. Giorgetti, P. Lambkin, Q. Li, L. Palchetti, S. Sottini, D. Grando, and W. Blau, “Phase-matched gratings for enhanced forward degenerate four-wave mixing,” J. Opt. Soc. Am. B 12, 58–66 (1995). [CrossRef]
  24. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  26. S. T. Peng, T. Tamir, and H. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Trans. Microwave Theory Tech. 1, 123–133(1975). [CrossRef]
  27. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009). [CrossRef]
  28. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, Jon A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10, 439–445 (2010). [CrossRef]
  29. W. F. Liu, J. I. Oh, and W Z Shen, “Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires,” Nanotechnology 22, 125705 (2011). [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef]
  31. R. Ding, L. Tsang, and H. Branunisch, “Wave propagation in a randomly rough parallel-plate waveguide,” IEEE Trans. Microwave Theory Tech. 57, 1216–1223 (2009). [CrossRef]
  32. C. Min, and G. Veronis, “Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides,” Opt. Express 18, 20939–20948 (2010). [CrossRef]
  33. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995). [CrossRef]
  34. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited