OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 24 — Aug. 20, 2012
  • pp: 5767–5772

Hybrid integrated photodetector with flat-top steep-edge spectral response

Xinye Fan, Yongqing Huang, Xiaomin Ren, Xiaofeng Duan, Fuquan Hu, Qi Wang, Shiwei Cai, and Xia Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 24, pp. 5767-5772 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hybrid integrated photodetectors with flat-top steep-edge spectral responses that consist of an Si-based multicavity Fabry–Perot (F–P) filter and an InP-based p-i-n absorption structure (with a 0.2 μm In0.53Ga0.47As absorption layer), have been designed and fabricated. The performance of the hybrid integrated photodetectors is theoretically investigated by including key factors such as the thickness of each cavity, the pairs of each reflecting mirror, and the thickness of the benzocyclobutene bonding layer. The device is fabricated by bonding an Si-based multicavity F–P filter with an InP-based p-i-n absorption structure. A hybrid integrated photodetector with a peak quantum efficiency of 55% around 1549.2 nm, the 0.5dB band of 0.43 nm, the 25 dB band of 1.06 nm, and 3 dB bandwidth more than 16 GHz, is simultaneously obtained. Based on multicavity F–P structure, this device has good flat-top steep-edge spectral response.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers
(230.5160) Optical devices : Photodetectors

ToC Category:
Optical Devices

Original Manuscript: May 29, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 12, 2012
Published: August 13, 2012

Xinye Fan, Yongqing Huang, Xiaomin Ren, Xiaofeng Duan, Fuquan Hu, Qi Wang, Shiwei Cai, and Xia Zhang, "Hybrid integrated photodetector with flat-top steep-edge spectral response," Appl. Opt. 51, 5767-5772 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100 G and beyond,” IEEE Commun. Mag. 48, S56–S64 (2010). [CrossRef]
  2. Y. F. Zhou, Y. Q. Huang, X. F. Duan, X. Y. Fan, and X. M. Ren, “Resonant cavity enhanced (RCE) photodetectors with flat-top and steep-edge spectral response,” Opt. Laser Technol. 44, 285–289 (2012). [CrossRef]
  3. Z. G. Wu, S. Honda, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Tunable monolithic DWDM band-selection interleaver filter switch on silicon-on-insulator substrate,” J. Lightwave Technol. 26, 3363–3368 (2008). [CrossRef]
  4. Q. J. Wang, Y. Zhang, and Y. C. Soh, “Thin-film III–V photodetectors integrated on silicon-on-insulator photonics ICs,” J. Lightwave Technol. 25, 1053–1060 (2007). [CrossRef]
  5. R. Slavik and S. LaroRhelle, “Large-band periodic filters for DWDM using multiple-superimposing fiber Bragg gratings,” IEEE Photon. Technol. Lett. 14, 1704–1706(2002). [CrossRef]
  6. Y. H. Zuo, R. W. Mao, Y. Y. Zheng, X. Shi, L. Zhao, W. H. Shi, B. W. Cheng, J. Z. Yu, and Q. M. Wang, “A Si-based tunable narrow-band flat-top filter with multiple-step-type Fabry–Pérot cavity structure,” IEEE Photon. Technol. Lett. 17, 2134–2136 (2005). [CrossRef]
  7. L. R. Chen, “Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings,” Opt. Commun. 205, 271–276 (2002). [CrossRef]
  8. Q. Chen, D. Chitnis, and K. Walls, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197–199 (2012). [CrossRef]
  9. E. Atanassova and D. Spasov, “Thermal Ta2O5 alternative to SiO2 for storage capacitor application,” Microelectron. Reliab. 42, 1171–1177 (2002). [CrossRef]
  10. D. H. Kim, H. J. Song, and C. H. Roh, “Improved spectral response of an InAs QD RC-SACM-APD with Ta2O5/SiO2 DBRs,” in The 7th International Conference on Nanotechnology (IEEE, 2007), pp. 681–685.
  11. R. Zhang and R. R. Mansour, “Low-cost dielectric-resonator filters with improved spurious performance,” IEEE Trans. Microwave Theor. Tech. 55, 2168–2175 (2007). [CrossRef]
  12. Z. Sheng, L. Liu, J. Brouckaert, S. He, and D. V. Thourhout, “InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides,” Opt. Express 18, 1756–1761 (2010). [CrossRef]
  13. J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 19, 1484–1486 (2007). [CrossRef]
  14. J. Michel, J. Liu, and C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photon. 4, 527–534 (2010). [CrossRef]
  15. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, “InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm,” Electron. Lett. 37, 764–765 (2001). [CrossRef]
  16. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. V. Thourhout, and R. Baets, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13, 10102–10108 (2005). [CrossRef]
  17. W. H. Ren, P. L. Tao, Z. W. Tan, Y. Liu, and S. S. Jian, “Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry–Perot cavity,” Chin. Opt. Lett. 7, 775–777 (2009). [CrossRef]
  18. X. F. Duan, Y. Q. Huang, X. M. Ren, Q. Wang, and S. W. Cai, “Long wavelength multiple resonant cavities RCE photodetectors on GaAs substrates,” IEEE Trans. Electron Devices 58, 3948–3953 (2011). [CrossRef]
  19. X. F. Duan, Y. Q. Huang, X. M. Ren, H. Huang, S. X. Xie, Q. Wang, and S. W. Cai, “Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array,” Opt. Express 18, 5879–5889(2010). [CrossRef]
  20. X. F. Duan, Y. Q. Huang, X. M. Ren, H. Huang, S. X. Xie, Q. Wang, and S. W. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27, 4697–4702(2009). [CrossRef]
  21. Y. Ohiso, H. Okamoto, and R. Iga, “1.55 μm buried-heterostructure VCSELs with InGaAsP/InP-GaAs/AlAs DBRs on a GaAs substrate,” IEEE J. Quantum Electron. 37, 1194–1202 (2001). [CrossRef]
  22. H. Huang, Y. Huang, X. Wang, Q. Wang, and X. Ren, “Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors,” IEEE Photon. Technol. Lett. 16, 245–247 (2004). [CrossRef]
  23. S. Takeda and Y. Shigeoka, “An optical thin film Bessel filter for 40  Gbit/sec–100  GHz spacing D-WDM system,” presented at the 28th European Conference on Optical Communication, Copenhagen, Denmark, 8–12September2002.
  24. N. J. C. Libatique and Ravinder K. Jain, “A broadly tunable wavelength-selectable WDM source using a fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 13, 1283–1285(2001). [CrossRef]
  25. W. Wang, Y. Q. Huang, X. F. Duan, Q. Yan, X. M. Ren, Q. Wang, J. W. Guo, S. W. Cai, and H. Huang, “Influence of substrate on transmission performance of epitaxially grown Fabry–Pérot filter,” Chin. Opt. Lett. 9, 111301 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited