OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 24 — Aug. 20, 2012
  • pp: 5780–5784

Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals

Yuhua Huang and Shichao Zhang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 24, pp. 5780-5784 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A widely tunable optical filter with variable bandwidth has been demonstrated based on the thermal effect on cholesteric liquid crystals. The central wavelength can be widely tuned from 826 to 517 nm and the bandwidth can be varied from 10 to 70 nm. It will have potential applications in many fields, especially in telecommunications and multi-spectral/hyper-spectral imaging systems.

© 2012 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.3720) Optical devices : Liquid-crystal devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: April 25, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: July 8, 2012
Published: August 13, 2012

Yuhua Huang and Shichao Zhang, "Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals," Appl. Opt. 51, 5780-5784 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Gan, H. Zhang, C. T. DeRose, R. A. Norwood, N. Peyghambarian, M. Fallahi, J. Luo, B. Chen, and A. K.-Y. Jen, “Low drive voltage Fabry-Perot étalon device tunable filters using poled hybrid sol-gel materials,” Appl. Phys. Lett. 89, 041127 (2006). [CrossRef]
  2. X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry–Perot filter,” Opt. Express 14, 8470–8475 (2006). [CrossRef]
  3. H. Macleod, Thin-Film Optical Filters (McGraw-Hill, 1989).
  4. R. B. Sargent and N. A. O’Brien, “Review of thin films in telecommunications applications,” in Optical Interference Coatings (Optical Society of America, 2001), paper WA2.
  5. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520–10532 (2007). [CrossRef]
  6. L. R. Chen, H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, “Fabrication of transmission filters with single or multiple flattened passbands based on chirped Moiré gratings,” Electron. Lett. 35, 584–585 (1999). [CrossRef]
  7. J. Floriot, F. Lemarchand, and M. Lequime, “Solid-spaced filters: an alternative for narrow bandpass applications,” Appl. Opt. 45, 1349–1355 (2006). [CrossRef]
  8. S. S. Wang and R. Magnussom, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414–2420 (1995). [CrossRef]
  9. L. J. Zhou, T. Ye, and J. P. Chen, “Waveguide self-coupling based reconfigurable resonance structure for optical filtering and delay,” Opt. Express 19, 8032–8044 (2011). [CrossRef]
  10. S. T. Wu, “Design of a liquid crystal based tunable electro-optic filter,” Appl. Opt. 28, 48–52 (1989). [CrossRef]
  11. Q. Yu, Z. Pan, L.-S. Yan, and A. E. Willner, “Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection,” J. Lightwave Technol. 20, 2267–2271 (2002). [CrossRef]
  12. P. E. Buchsbaum and J. D. Lane, “Tunable variable bandpass optical filter,” U.S. patent 6,700,690 (2March2004).
  13. Y. H. Ding, M. H. Pu, L. Liu, J. Xu, C. Peucheret, X. L. Zhang, D. X. Huang, and H. Y. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011). [CrossRef]
  14. Y. Huang and S. Zhang, “Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals,” Opt. Lett. 36, 4563–4565 (2011). [CrossRef]
  15. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009). [CrossRef]
  16. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photo-induced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012). [CrossRef]
  17. J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett. 89, 081130 (2006). [CrossRef]
  18. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006). [CrossRef]
  19. P. V. Shibaev, B. Crooker, M. Manevich, and E. Hanelt, “Mechanically tunable microlasers based on highly viscous chiral liquid crystals,” Appl. Phys. Lett. 99, 233302 (2011). [CrossRef]
  20. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Phototunable photonic bandgap in a chiral liquid crystal laser device,” Appl. Phys. Lett. 84, 2491–2493 (2004). [CrossRef]
  21. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83, 5353–5355 (2003). [CrossRef]
  22. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005). [CrossRef]
  23. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006). [CrossRef]
  24. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on the liquid crystal refractive indices” J. Appl. Phys. 96, 19–24 (2004). [CrossRef]
  25. Y. Huang, Y. Zhou, and S. T. Wu, “Lasing in dye-doped photonic liquid crystal devices,” Mol. Cryst. Liq. Cryst. 453, 251–262 (2006). [CrossRef]
  26. L. Li, Y. Jiang, and S. M. Faris, “Circularly polarizing reflective material having super broad-band reflection and transmission characteristics and method of fabricating and using same in drivers applications,” U.S. patent 6,034,753(7March2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited