OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 24 — Aug. 20, 2012
  • pp: 5812–5817

Fluidic actuation of an elastomeric grating

Raphael A. Guerrero, Sarah Jaye C. Oliva, and Johanna Mae M. Indias  »View Author Affiliations


Applied Optics, Vol. 51, Issue 24, pp. 5812-5817 (2012)
http://dx.doi.org/10.1364/AO.51.005812


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fluidic chamber with an elastomeric grating membrane is fabricated. Grating groove spacing is modified through membrane deformation via fluid injection. Tunable diffraction output is demonstrated. At normal incidence, the diffraction angle changes by 14.2° and 9.8° for incident wavelengths 632.8 and 488 nm, respectively, with an injected fluid volume of 1 ml.

© 2012 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Optical Devices

History
Original Manuscript: May 18, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 21, 2012
Published: August 13, 2012

Citation
Raphael A. Guerrero, Sarah Jaye C. Oliva, and Johanna Mae M. Indias, "Fluidic actuation of an elastomeric grating," Appl. Opt. 51, 5812-5817 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-24-5812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Aschwanden and A. Stemmer, “Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31, 2610–2612 (2006). [CrossRef]
  2. Y. Tung and K. Kurabayashi, “Nanoimprinted strain-controlled elastomeric gratings for optical wavelength tuning,” Appl. Phys. Lett. 86, 161113 (2005). [CrossRef]
  3. L. Whitehead and A. Clark, “Variable-spacing diffraction grating employing elastomeric surface waves,” Appl. Opt. 37, 5063–5069 (1998). [CrossRef]
  4. R. A. Guerrero, M. W. Sze, and J. R. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt. 49, 3634–3639 (2010). [CrossRef]
  5. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef]
  6. W. Qiao, D. Johnson, F. Tsai, S. H. Cho, and Y. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009). [CrossRef]
  7. S. W. Lee and S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007). [CrossRef]
  8. H. Son, M. Kim, and Y. Lee, “Tunable-focus liquid lens controlled by antagonistic winding-type SMA actuator,” Opt. Express 17, 14339–14350 (2009). [CrossRef]
  9. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003). [CrossRef]
  10. F. Tsai, S. H. Cho, Y. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291–293 (2008). [CrossRef]
  11. D. Zhang, N. Justis, and Y. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett. 29, 2855–2857 (2004). [CrossRef]
  12. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005). [CrossRef]
  13. R. Marks, D. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lens for opthalmic corrections,” Opt. Lett. 34, 515–517 (2009). [CrossRef]
  14. R. Marks, D. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses,” Opt. Lett. 35, 739–741 (2010). [CrossRef]
  15. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606(2010). [CrossRef]
  16. S. Calixto, F. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008). [CrossRef]
  17. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34, 2793–2795 (2009). [CrossRef]
  18. R. A. Guerrero, J. Barretto, J. Uy, I. Culaba, and B. Chan, “Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating,” Opt. Commun. 270, 1–7 (2007). [CrossRef]
  19. G. Beadie, M. Sandrock, M. Wiggins, R. Lepkowicz, J. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008). [CrossRef]
  20. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009). [CrossRef]
  21. E. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  22. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited