OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6020–6030

Modeling of micro cat’s eye retroreflectors using a matrix-based three-dimensional ray tracing technique

Bing-jun Yang, Keng-hsing Chao, and Jui-che Tsai  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6020-6030 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we develop a three-dimensional (3D) ray tracing tool based on the ABCD ray transfer matrices. With symmetric optical components and under paraxial approximation, two sets of 2×2 ABCD matrices, each for a two-dimensional subspace, can be used to describe the 3D ray propagation completely. Compared to commercial ray-tracing software packages, our tool requires no tedious drawing, and the results for various conditions, such as different device dimensions and incident angles, can be easily obtained by simply changing the parameter values used for the calculation. We have employed this matrix-based 3D ray tracing tool to model cat’s eye retroreflectors. The cat’s eye performance, including the retroreflection efficiency, acceptance angle (i.e., field of view), and beam divergence and deviation, is fully studied. The application of this 3D ray tracing technique can be further extended to other optical components.

© 2012 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(080.2740) Geometric optics : Geometric optical design

Original Manuscript: June 4, 2012
Manuscript Accepted: June 27, 2012
Published: August 24, 2012

Bing-jun Yang, Keng-hsing Chao, and Jui-che Tsai, "Modeling of micro cat’s eye retroreflectors using a matrix-based three-dimensional ray tracing technique," Appl. Opt. 51, 6020-6030 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.reflexite.com/refl/americas/en/traffic-control .
  2. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001–56012 (2005). [CrossRef]
  3. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Solkolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001). [CrossRef]
  4. P. G. Goetz, W. S. Rabinovich, R. Mahon, J. L. Murphy, M. S. Ferraro, W. R. Smith, B. B. Xu, H. R. Burris, C. I. Moore, and W. W. Schultz, “Modulating retro-reflector lasercom systems at the Naval Research Laboratory,” in 2010 Military Communications Conference (MILCOM, 2010), pp. 1601–1606.
  5. J. C. Juarez, A. Dwivedi, A. Mammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006). [CrossRef]
  6. D. J. Hayes, “Cat’s eye retro-reflector array coding device and method of fabrication,” U.S. patent 7,152,984 B1 (26December2006).
  7. K. H. Chao, C. D. Liao, and J. C. Tsai, “Array of cat’s eye retro-reflectors with modulability for an optical identification system,” in 2010 IEEE International Conference on Optical MEMS & Nanophotonics (2010), pp. 7–8.
  8. K. H. Chao, C. D. Liao, B. J. Yang, and J. C. Tsai, “Fabrication and characterization of a micro tunable cat’s eye retro-reflector,” Opt. Commun. 284, 5221–5224 (2011). [CrossRef]
  9. X. Zhu, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32 (2002). [CrossRef]
  10. V. A. Handerek and L. C. Laycock, “Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view,” Proc. SPIE 5641, 1–9(2004). [CrossRef]
  11. P. G. Goetz, W. S. Rabinovich, R. Mahon, L. Swingen, G. C. Gilbreath, J. L. Murphy, H. R. Burris, and M. F. Stell, “Practical considerations of retroreflector choice in modulating retroreflector systems,” in 2005 Digest of the LEOS Summer Topical Meetings (2005), pp. 49–50.
  12. E. Hecht, “6.2 Analytical ray tracing,” in Optics, 4th ed.(Addison-Wesley, 2002), pp. 246–253.
  13. A. Gerrard and J. M. Burch, “Matrix methods in paraxial optics,” in Introduction to Matrix Methods in Optics (Dover, 1994), pp. 24–75.
  14. H. A. Haus, “5.5 The ABCD matrix in ray optics,” in Waves and Fields in Optoelectronics (Prentice-Hall, 1984), pp. 132–136.
  15. A. Nussbaum, “Modernizing the teaching of advanced geometric optics,” Proc. SPIE 1603, 389–400(1992). [CrossRef]
  16. J. J. Snyder, “Paraxial ray analysis of a cat’s-eye retroreflector,” Appl. Opt. 14, 1825–1828 (1975). [CrossRef]
  17. H. H. Arsenault, “A matrix representation for non-symmetrical optical systems,” J. Opt. 11, 87–91 (1980). [CrossRef]
  18. B. Macukow and H. H. Arsenault, “Matrix decompositions for nonsymmetrical optical systems,” J. Opt. Soc. Am. 73, 1360–1366 (1983). [CrossRef]
  19. B. Lu, S. Xu, Y. Hu, and B. Cai, “Matrix representation of three-dimensional astigmatic resonators,” Opt. Quantum Electron. 24, 619–630 (1992). [CrossRef]
  20. I. Moreno, C. Ferreira, and M. M. Sanchez-Lopez, “Ray matrix analysis of anamorphic fractional Fourier systems,” J. Opt. A Pure Appl. Opt. 8, 427–435 (2006). [CrossRef]
  21. K. Chen, H. Yang, L. Sun, and G. Jin, “Astigmatism analysis by matrix methods in white cells,” Proc. SPIE 7156, 71560G (2009).
  22. W. F. Harris, “Paraxial ray tracing through noncoaxial astigmatic optical systems, and a 5×5 augmented system matrix,” Opt. Vis. Sci. 71, 282–285 (1994).
  23. P. D. Lin and C. K. Sung, “Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis,” Optik 117, 329–340 (2006). [CrossRef]
  24. P.-D. Lin and C.-C. Hsueh, “6×6 matrix formalism of optical elements for modeling and analyzing 3D optical systems,” Appl. Phys. B 97, 135–143 (2009). [CrossRef]
  25. H. H. Arsenault and B. Macukow, “Factorization of the transfer matrix for symmetrical optical systems,” J. Opt. Soc. Am. 73, 1350–1359 (1983). [CrossRef]
  26. D. S. Goodman, “1.8 refraction and reflection at interfaces between homogeneous media,” in Handbook of Optics, Volume 1: Geometrical and Physical Optics, Polarized Light, Components and Instruments, 3rd ed. (McGraw-Hill, 2010), pp. 1.23–1.26.
  27. http://www.photonengr.com/software/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited