OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6038–6044

Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping

A. Vijayakumar and Shanti Bhattacharya  »View Author Affiliations

Applied Optics, Vol. 51, Issue 25, pp. 6038-6044 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact optics configuration for the generation of donut beams for trapping atoms at the micrometer scale using a multilevel spiral-phase Fresnel zone plate (FZP) and a semiconductor laser is proposed. A FZP is designed and a multilevel spiral phase is integrated into it. A spiral-phase FZP with a radius of 1 mm and with more than 1300 half-period zones is designed with multiple angular levels for integer and fractional topological charges, and the device is fabricated using electron-beam lithography direct writing. The performance of the device is evaluated, and the generation of symmetric and asymmetric donut beams is successfully demonstrated.

© 2012 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.1965) Diffraction and gratings : Diffractive lenses
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Optical Design and Fabrication

Original Manuscript: May 15, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: July 17, 2012
Published: August 24, 2012

A. Vijayakumar and Shanti Bhattacharya, "Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping," Appl. Opt. 51, 6038-6044 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose–Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001). [CrossRef]
  2. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose–Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001). [CrossRef]
  3. M. Boyd, E. W. Streed, P. Medley, G. K. Campbell, J. Mun, W. Ketterle, and D. E. Pritchard, “Atom trapping with a thin magnetic film,” Phys. Rev. A 76, 043524 (2007). [CrossRef]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  5. E. Fallman and O. Axner, “Design of fully steerable dual-trap optical tweezers,” Appl. Opt. 36, 2107–2113 (1997). [CrossRef]
  6. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997). [CrossRef]
  7. J. E. Curtis, B. A. Koss, and D. J. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  9. S. Bergamini, B. Darquie, M. Jones, L. Jacubowiez, A. Browaeys, and P. Grangier, “Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator,” J. Opt. Soc. Am. A 21, 1889–1894 (2004). [CrossRef]
  10. E. Schonbrun, R. Piesten, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial modulator,” Opt. Express 13, 3777–3786 (2005). [CrossRef]
  11. G. Gibson, D. M. Carberry, G. Whyte, J. Leach, J. Courtial, J. C. Jackson, D. Robert, M. Miles, and M. Padgett, “Holographic assembly workstation for optical manipulation,” J. Opt. A 10, 044009 (2008). [CrossRef]
  12. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010). [CrossRef]
  13. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5, 491–505 (2008). [CrossRef]
  14. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849–861 (2005). [CrossRef]
  15. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006). [CrossRef]
  16. V. V. Kotlyar, A. A. Kovalev, S. N. Khonina, R. V. Skidanov, V. A. Soifer, H. Elfstrom, N. Tossavainen, and J. Turunen, “Diffraction of conic and Gaussian beams by a spiral phase plate,” Appl. Opt. 45, 2656–2665 (2006). [CrossRef]
  17. K. J. Moh, X. C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Appl. Opt. 45, 1153–1161 (2006). [CrossRef]
  18. N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011). [CrossRef]
  19. B. Zhang and D. Zhao, “Focusing properties of Fresnel zone lens with spiral phase,” Opt. Express 18, 12818–12823 (2010). [CrossRef]
  20. G. H. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26, 1788–1797 (2009). [CrossRef]
  21. W. H. Carter, “Electromagnetic field of a Gaussian beam with an elliptical cross section,” J. Opt. Soc. Am. A 62, 1195–1201 (1972). [CrossRef]
  22. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688–694 (2004). [CrossRef]
  23. C. S. Guo, D. M. Xue, Y. J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268, 235–239 (2006). [CrossRef]
  24. J. E. Harvey, “Fourier treatment of near-field scalar diffraction theory,” Am. J. Phys. 47, 974–980 (1979). [CrossRef]
  25. H. G. Kraus, “Huygens-Fresnel-Kirchoff wave-front diffraction formulation: spherical waves,” J. Opt. Soc. Am. A 6, 1196–1205 (1989). [CrossRef]
  26. S. A. Rishton and D. P. Kern, “Point exposure distribution measurements for proximity correction in electron beam lithography on a sub-100 nm scale,” J. Vac. Sci. Technol. B 5, 135–141 (1987). [CrossRef]
  27. T. K. Lean, “Theory and practice of proximity correction by secondary exposure,” J. Appl. Phys. 65, 1776–1781 (1989). [CrossRef]
  28. T. Abe, S. Yamasaki, T. Yamaguchi, R. Yoshikawa, and T. Takigawa, “Representative figure method for proximity error correction [II],” Jpn. J. Appl. Phys. 30, 2965–2969 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited