OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 25 — Sep. 1, 2012
  • pp: 6063–6075

Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering

Sascha R. Engel, Andreas F. Koegler, Yi Gao, Daniel Kilian, Michael Voigt, Thomas Seeger, Wolfgang Peukert, and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 51, Issue 25, pp. 6063-6075 (2012)
http://dx.doi.org/10.1364/AO.51.006063


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the production of oxide nanoparticles at a commercial scale, flame spray processes are frequently used where mostly oxygen is fed to the flame if high combustion temperatures and thus small primary particle sizes are desired. To improve the understanding of these complex processes in situ, noninvasive optical measurement techniques were applied to characterize the extremely turbulent and unsteady combustion field at those positions where the particles are formed from precursor containing organic solvent droplets. This particle-forming regime was identified by laser-induced breakdown detection. The gas phase temperatures in the surrounding of droplets and particles were measured with O2-based pure rotational coherent anti-Stokes Raman scattering (CARS). Pure rotational CARS measurements benefit from a polarization filtering technique that is essential in particle and droplet environments for acquiring CARS spectra suitable for temperature fitting. Due to different signal disturbing processes only the minority of the collected signals could be used for temperature evaluation. The selection of these suitable signals is one of the major problems to be solved for a reliable evaluation process. Applying these filtering and signal selection steps temperature measurements have successfully been conducted. Time-resolved, single-pulse measurements exhibit temperatures between near-room and combustion temperatures due to the strongly fluctuating and flickering behavior of the particle-generating flame. The mean flame temperatures determined from the single-pulse data are decreasing with increasing particle concentrations. They indicate the dissipation of large amounts of energy from the surrounding gas phase in the presence of particles.

© 2012 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(160.4236) Materials : Nanomaterials
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Spectroscopy

History
Original Manuscript: April 2, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: July 30, 2012
Published: August 24, 2012

Citation
Sascha R. Engel, Andreas F. Koegler, Yi Gao, Daniel Kilian, Michael Voigt, Thomas Seeger, Wolfgang Peukert, and Alfred Leipertz, "Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering," Appl. Opt. 51, 6063-6075 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-25-6063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596(2001). [CrossRef]
  2. R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chimica Oggi 22, 27–29 (2004).
  3. G. L. Messing, S.-C. Zhang, and G. V. Jayanthi, “Ceramic powder synthesis by spray pyrolysis,” J. Am. Ceram. Soc. 76, 2707–2726 (1993). [CrossRef]
  4. L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002). [CrossRef]
  5. G. D. Ulrich, “Special report,” Chem. Eng. News 62, 22–29 (1984). [CrossRef]
  6. S. Pratsinis, “Flame aerosol synthesis of ceramic powders,” Prog. Energy Combust. Sci. 24, 197–219 (1998). [CrossRef]
  7. T. Johannessen, S. E. Pratsinis, and H. Livbjerg, “Computational fluid-particle dynamics for the flame synthesis of alumina particles,” Chem. Eng. Sci. 55, 177–191 (2000). [CrossRef]
  8. A. N. Karpetis and A. Gomez, “An experimental study of well-defined turbulent nonpremixed spray flames,” Combust. Flame 121, 1–23 (2000). [CrossRef]
  9. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010). [CrossRef]
  10. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Prog. Energy Combust. Sci. 37, 525–564 (2011). [CrossRef]
  11. R. Obertacke, F. Wintrich, H. Wintrich, and A. Leipertz, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography,” Combust. Sci. Technol. 121, 133–151 (1996). [CrossRef]
  12. P. W. Morrison, R. Raghavan, A. J. Timpone, C. P. Artelt, and S. E. Pratsinis, “In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles,” Chem. Mater. 9, 2702–2708 (1997). [CrossRef]
  13. O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, and C. M. Megaridis, “Monitoring the flame synthesis of TiO2 particles by in situ FTIR spectroscopy and thermophoretic sampling,” Combust. Flame 124, 560–572 (2001). [CrossRef]
  14. H. K. Kammler, S. E. Pratsinis, P. W. Morrison, and B. Hemmerling, “Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles,” Combust. Flame 128, 369–381 (2002). [CrossRef]
  15. M. D. Allendorf, J. R. Bautista, and E. Potkay, “Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy,” J. Appl. Phys. 66, 5046–5051 (1989). [CrossRef]
  16. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373–377 (2007). [CrossRef]
  17. A. Leipertz, S. Pfadler, and R. Schießl, “An overview of combustion diagnostics,” in Handbook of Combustion(Wiley-VCH, 2010).
  18. J. Y. Hwang, Y. S. Gil, J. I. Kim, M. Choi, and S. H. Chung, “Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF,” J. Aerosol Sci. 32, 601–613 (2001). [CrossRef]
  19. T. Seeger and A. Leipertz, “Experimental comparison of single shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef]
  20. T. Seeger, F. Beyrau, A. Braeuer, and A. Leipertz, “High pressure pure rotational CARS: Comparison of temperature measurements with O2, N2, and synthetic air,” J. Raman Spectrosc. 34, 932–939 (2003). [CrossRef]
  21. L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996). [CrossRef]
  22. P.-E. Bengtsson, L. Martinsson, and M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentrations of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995). [CrossRef]
  23. T. R. Meyer, S. Roy, R. P. Lucht, and J. R. Gord, “Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2-O2-N2 mole-fraction measurements in model gas-turbine combustors,” Combust. Flame 142, 52–61 (2005). [CrossRef]
  24. J. Bood, P.-E. Bengtsson, and T. Dreier, “Rotational coherent anti-Stokes Raman spectroscopy (CARS) in nitrogen at high pressures (0.1–44 MPa): Experimental and modelling results,” J. Raman Spectrosc. 31, 703–710 (2000). [CrossRef]
  25. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst. 31, 833–840 (2007). [CrossRef]
  26. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009). [CrossRef]
  27. M. Weikl, S. Tedder, T. Seeger, and A. Leipertz, “Investigation of porous media combustion by coherent anti-Stokes Raman spectroscopy,” Exp. Fluids 49, 775–781 (2010). [CrossRef]
  28. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames,” Proc. Combust. Inst. 33, 831–838 (2011). [CrossRef]
  29. J. D. Black and C. A. Long, “Rotational coherent anti-Stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements,” Appl. Opt. 31, 4291–4297 (1992). [CrossRef]
  30. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, and A. Leipertz, “Simultaneous temperature and relative nitrogen—oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3506 (1997). [CrossRef]
  31. F. Beyrau, A. Bräuer, T. Seeger, and A. Leipertz, “Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering,” Opt. Lett. 29, 247–249 (2004). [CrossRef]
  32. C. Brackmann, J. Bood, P.-E. Bengtsson, T. Seeger, M. Schenk, and A. Leipertz, “Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames,” Appl. Opt. 41, 564–572(2002). [CrossRef]
  33. P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992). [CrossRef]
  34. H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta Part B 66, 179–185(2011). [CrossRef]
  35. H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, and S. Izumi, “Detection of fine particles in liquids by laser breakdown method,” Jpn. J. Appl. Phys. 31, 1514–1518 (1992). [CrossRef]
  36. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University, 2006).
  37. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  38. J. Kiefer, J. W. Tröger, T. Seeger, A. Leipertz, B. Li, Z. S. Li, and M. Alden, “Laser-induced breakdown spectroscopy in gases using ungated detection in combination with polarization filtering and online background correction,” Meas. Sci. Technol. 21, 065303 (2010). [CrossRef]
  39. R. Strobel and S. Pratsinis, “Flame aerosol synthesis of smart nanostructured materials,” J. Mater. Chem. 17, 4743–4756 (2007). [CrossRef]
  40. T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, 1999).
  41. S. Brunauer, P. Emmett, and E. Teller, “Adsorption of gases in multilayers,” J. Am. Chem. Soc. 60, 309–319 (1938). [CrossRef]
  42. S. A. Tedder, M. C. Weikl, T. Seeger, and A. Leipertz, “Determination of probe volume dimensions in coherent measurement techniques,” Appl. Opt. 47, 6601–6605 (2008). [CrossRef]
  43. A. Leipertz and T. Seeger, “Combustion diagnostics by pure rotational coherent anti-Stokes Raman scattering,” in Optical Processes in Microparticles and Nanostructures: a Festschrift Dedicated to Richard Kounai Chang on His Retirement from Yale University (World Scientific, 2011).
  44. E. Magens, “Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen,” Ph.D. dissertation (University Erlangen-Nuremberg, 1992).
  45. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4-flames,” J. Raman Spectrosc. 33, 919–924 (2002). [CrossRef]
  46. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986). [CrossRef]
  47. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, and J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992). [CrossRef]
  48. A. Bohlin and P.-E. Bengtsson, “Rotational CARS thermometry in diffusion flames: On the influence of nitrogen spectral line-broadening by CH4 and H2,” Proc. Combust. Inst. 33, 823–830 (2011). [CrossRef]
  49. F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673–1680 (2005). [CrossRef]
  50. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266 nm and 355 nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004). [CrossRef]
  51. T. Seeger, J. Jonuscheit, M. Schenk, and A. Leipertz, “Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique,” J. Mol. Struct. 661–662, 515–524 (2003). [CrossRef]
  52. F. Vestin, M. Afzelius, H. Berger, F. Chaussard, R. Saint-Loup, and P. E. Bengtsson, “Rotational CARS thermometry at high temperature (1800 K) and high pressure (0.1–1.55 MPa),” J. Raman Spectrosc. 38, 963–968 (2007). [CrossRef]
  53. L. Goss, D. Trump, and W. Roquemore, “Simultaneous CARS and LDA measurements in a turbulent flame,” in 20th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, 1984), paper AIAA-84-1458.
  54. D. Dunn-Rankin, G. L. Switzer, C. A. Obringer, and T. A. Jackson, “Effect of droplet-induced breakdown on CARS temperature measurements,” Appl. Opt. 29, 3150–3159 (1990). [CrossRef]
  55. F. Liu, H. Guo, G. J. Smallwood, and Ö. L. Gülder, “Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames,” Proc. Combust. Inst. 29, 1543–1550 (2002). [CrossRef]
  56. C. K. Law, A. Makino, and T. F. Lu, “On the off-stoichiometric peaking of adiabatic flame temperature,” Combust. Flame 145, 808–819 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited